Details of Award
NERC Reference : NE/W004852/1
Dense Gas Dispersion and Modelling at Fagradalsfjall, Iceland
Grant Award
- Principal Investigator:
- Dr RR Burton, University of Leeds, National Centre for Atmospheric Science
- Co-Investigator:
- Dr BJ Brooks, University of Leeds, National Centre for Atmospheric Science
- Co-Investigator:
- Professor S Mobbs, University of Leeds, National Centre for Atmospheric Science
- Grant held at:
- University of Leeds, National Centre for Atmospheric Science
- Science Area:
- Atmospheric
- Earth
- Freshwater
- Marine
- Terrestrial
- Overall Classification:
- Unknown
- ENRIs:
- Biodiversity
- Environmental Risks and Hazards
- Global Change
- Natural Resource Management
- Pollution and Waste
- Science Topics:
- Boundary Layer Meteorology
- Ground-based measurement
- Dispersion
- Air pollution
- Boundary layer models
- Aerosol precursors
- Land - Atmosphere Interactions
- Abstract:
- The ongoing eruption at Fagradalsfjall in Iceland presents an outstanding and rare opportunity to observe and model the behaviour of dense volcanic gases. Sulphur Dioxide (SO2) is the principal emission from lava-rich eruptions such as at Fagradalsfjall. With more than double the molecular weight of air, this is prone to exhibiting dense gas dispersion characteristics such as settling, with the potential to significantly affect the dispersion over scales of hundreds of kilometers. This can lead to enhanced concentrations at low levels with consequences for air quality and human health. This project aims to (a) collect a surface air quality and meteorological dataset and (b) produce a modelling framework capable of simulating dense gas and validate it against (a). Such a framework does not exist at present. This is a significant, time-limited and accessible eruption event which, if responded to now, can lead to major advances in both scientific understandings and in the management of future, possibly larger, eruptions from which there is a serious gas hazard. (A) We will enhance existing air quality observations in the vicinity of Fagradalsfjall, creating a network to provide a comprehensive assessment of dense volcanic gas dispersion on a scale of 50-100 km. This unique dataset will provide the first independent verification for a full meteorological prediction model with dense gas capability coupled with surface heating (see below). (B) Recent model development work has demonstrated effective volcanic gas dispersion predictions using an adapted version of the NCAR Weather Research and Forecasting (WRF) model. This system was used to successfully interpret aircraft measurements of CO2 dispersion from the (subglacial) Katla volcano in Iceland and to explain quantitatively, for the first time, the dense gas CO2 behaviour which led to the Lake Nyos disaster in 1986 that saw dense CO2 pooling and draining down valleys, causing ~1700 deaths. Neither of these applications considered (or required) a heated surface. However, the Fagradalsfjall eruption is now in a phase where lava fountains have been reported, and so the effect of surface heating will need to be considered in any modelling, to include the complex interactions and feedbacks between a dense gas, a heated surface, and the underlying meteorology. The model, after development and verification, will be available in the future as an operational hazard prediction system and and could lead to significant improvements in the UK national capability to respond to dense gas releases. This includes anthropogenic releases, for example industrial accidents and fires.
- NERC Reference:
- NE/W004852/1
- Grant Stage:
- Completed
- Scheme:
- Standard Grant FEC
- Grant Status:
- Closed
- Programme:
- Urgent Grant
This grant award has a total value of £50,459
FDAB - Financial Details (Award breakdown by headings)
DI - Other Costs | Indirect - Indirect Costs | DA - Investigators | DA - Estate Costs | DA - Other Directly Allocated |
---|---|---|---|---|
£10,888 | £16,656 | £19,074 | £3,362 | £480 |
If you need further help, please read the user guide.