Skip to content
Natural Environment Research Council
Grants on the Web - Return to homepage Logo

Details of Award

NERC Reference : NE/W004852/1

Dense Gas Dispersion and Modelling at Fagradalsfjall, Iceland

Grant Award

Principal Investigator:
Dr RR Burton, University of Leeds, National Centre for Atmospheric Science
Co-Investigator:
Dr BJ Brooks, University of Leeds, National Centre for Atmospheric Science
Co-Investigator:
Professor S Mobbs, University of Leeds, National Centre for Atmospheric Science
Science Area:
Atmospheric
Earth
Freshwater
Marine
Terrestrial
Overall Classification:
Unknown
ENRIs:
Biodiversity
Environmental Risks and Hazards
Global Change
Natural Resource Management
Pollution and Waste
Science Topics:
Boundary Layer Meteorology
Ground-based measurement
Dispersion
Air pollution
Boundary layer models
Aerosol precursors
Land - Atmosphere Interactions
Abstract:
The ongoing eruption at Fagradalsfjall in Iceland presents an outstanding and rare opportunity to observe and model the behaviour of dense volcanic gases. Sulphur Dioxide (SO2) is the principal emission from lava-rich eruptions such as at Fagradalsfjall. With more than double the molecular weight of air, this is prone to exhibiting dense gas dispersion characteristics such as settling, with the potential to significantly affect the dispersion over scales of hundreds of kilometers. This can lead to enhanced concentrations at low levels with consequences for air quality and human health. This project aims to (a) collect a surface air quality and meteorological dataset and (b) produce a modelling framework capable of simulating dense gas and validate it against (a). Such a framework does not exist at present. This is a significant, time-limited and accessible eruption event which, if responded to now, can lead to major advances in both scientific understandings and in the management of future, possibly larger, eruptions from which there is a serious gas hazard. (A) We will enhance existing air quality observations in the vicinity of Fagradalsfjall, creating a network to provide a comprehensive assessment of dense volcanic gas dispersion on a scale of 50-100 km. This unique dataset will provide the first independent verification for a full meteorological prediction model with dense gas capability coupled with surface heating (see below). (B) Recent model development work has demonstrated effective volcanic gas dispersion predictions using an adapted version of the NCAR Weather Research and Forecasting (WRF) model. This system was used to successfully interpret aircraft measurements of CO2 dispersion from the (subglacial) Katla volcano in Iceland and to explain quantitatively, for the first time, the dense gas CO2 behaviour which led to the Lake Nyos disaster in 1986 that saw dense CO2 pooling and draining down valleys, causing ~1700 deaths. Neither of these applications considered (or required) a heated surface. However, the Fagradalsfjall eruption is now in a phase where lava fountains have been reported, and so the effect of surface heating will need to be considered in any modelling, to include the complex interactions and feedbacks between a dense gas, a heated surface, and the underlying meteorology. The model, after development and verification, will be available in the future as an operational hazard prediction system and and could lead to significant improvements in the UK national capability to respond to dense gas releases. This includes anthropogenic releases, for example industrial accidents and fires.
Period of Award:
1 Nov 2021 - 31 Jan 2023
Value:
£50,459
Authorised funds only
NERC Reference:
NE/W004852/1
Grant Stage:
Completed
Scheme:
Standard Grant FEC
Grant Status:
Closed
Programme:
Urgent Grant

This grant award has a total value of £50,459  

top of page


FDAB - Financial Details (Award breakdown by headings)

DI - Other CostsIndirect - Indirect CostsDA - InvestigatorsDA - Estate CostsDA - Other Directly Allocated
£10,888£16,656£19,074£3,362£480

If you need further help, please read the user guide.