Skip to content
Natural Environment Research Council
Grants on the Web - Return to homepage Logo

Details of Award

NERC Reference : NE/V001523/1

Molecular Level Understanding of New Particle Formation in the Urban Atmosphere: Contribution of Local Pollutants

Grant Award

Principal Investigator:
Professor R Harrison, University of Birmingham, Sch of Geography, Earth & Env Sciences
Co-Investigator:
Professor Z Shi, University of Birmingham, Sch of Geography, Earth & Env Sciences
Science Area:
Atmospheric
Overall Classification:
Panel B
ENRIs:
Environmental Risks and Hazards
Global Change
Science Topics:
Aerosols and particles
Atmospheric Kinetics
Aerosols
Tropospheric Processes
Abstract:
Airborne particles are made up of tiny specks of solid matter or liquid droplets floating in the air, too small to be seen individually by the naked eye. Gaining a good understanding of these particles is important for a number of reasons including the following: - breathing high concentrations is bad for human health, having been associated with increased hospital admissions and reduced life expectancy. More deaths occur globally due to airborne particle exposure than from malaria and AIDS combined; - small particles influence the formation of clouds, and their concentration in the atmosphere has a direct and indirect influence on climate by affecting the amount of sunshine reflected back to space; - high concentrations of particles in the air cause a loss of visibility and the hazes that can be seen on polluted days. One of the most pressing current scientific questions in atmospheric science is the formation of new particles in the atmosphere from gases by processes known as nucleation. Recent advances in instrumentation have allowed direct observation of nucleation processes as gas molecules join together to form new particles. Up until now these processes have been studied mostly under very controlled conditions in reaction chambers and in clean mountain-top air. The processes occurring in heavily polluted air are different from these and our proposal is to make measurements of particle nucleation processes in polluted atmospheres in cities where the composition is very well characterised. This will allow us to evaluate the contribution of pollutant emissions to particle formation processes and their contribution to new particle production in the urban atmosphere, as well as processes unconnected with road traffic emissions. Field measurements will be made in Beijing and Barcelona, cities where new particle formation occurs frequently, and where two sampling sites will be established, one at the kerbside of a major highway and the other at a background location. These will be equipped with highly sophisticated state-of-the-art instruments which will identify the times when new particles are forming in the atmosphere and will determine the chemical characteristics of the molecules which are condensing into clusters to form the new particles. Both cities have high sunshine intensity (needed for frequent new particle formation), but widely differing pollution climates. The outcome of the work will be a much better understanding of the processes responsible for new particle formation through nucleation in polluted air. Such knowledge will allow better design of mitigation strategies for reduction of ultrafine particle concentrations as well as providing the necessary knowledge to improve climate prediction models where currently one of the largest uncertainty relates to the role of airborne particles in affecting climate. In the future, it is expected that reductions in pollutant emissions and improved air quality may affect new particle formation. Lower concentrations of emitted particles will favour increased new particle formation, while reductions in sulphur dioxide and organic compounds are expected to be unfavourable. Well-designed numerical models are needed to predict the net future impacts upon new particle formation, and hence both urban particle concentrations and cloud condensation nuclei in more remote locations.
Period of Award:
1 Feb 2021 - 31 Jul 2024
Value:
£639,776
Authorised funds only
NERC Reference:
NE/V001523/1
Grant Stage:
Awaiting Completion
Scheme:
Standard Grant FEC
Grant Status:
Active
Programme:
Standard Grant

This grant award has a total value of £639,776  

top of page


FDAB - Financial Details (Award breakdown by headings)

DI - Other CostsIndirect - Indirect CostsDA - InvestigatorsDI - StaffDA - Estate CostsDA - Other Directly AllocatedDI - T&S
£71,375£201,998£46,834£214,074£55,482£1,964£48,051

If you need further help, please read the user guide.