Skip to content
Natural Environment Research Council
Grants on the Web - Return to homepage Logo

Details of Award

NERC Reference : NE/V000896/1

The past, present and future of snow algae in Antarctica: a threatened terrestrial ecosystem?

Grant Award

Principal Investigator:
Professor P Convey, NERC British Antarctic Survey, Science Programmes
Co-Investigator:
Professor LS Peck, NERC British Antarctic Survey, Science Programmes
Co-Investigator:
Dr PT Fretwell, NERC British Antarctic Survey, Science Programmes
Science Area:
Atmospheric
Earth
Freshwater
Marine
Terrestrial
Overall Classification:
Panel C
ENRIs:
Biodiversity
Environmental Risks and Hazards
Global Change
Natural Resource Management
Pollution and Waste
Science Topics:
Stress responses in microbes
Temperature
Responses to environment
Comparative metabolomics
Global metabolome
Lipid metabolism
Metabolic profiling
Metabolomics / Metabonomics
Metabolomics / Metabonomics
Ecosystem impacts
Remote sensing
Climate & Climate Change
Carbon cycling
Carbon sequestration
Genome sequencing
Microbial biodiversity
Microbial communities
Nutrient cycling
Primary production
Environmental Microbiology
Algae
Lichens
Microorganisms
Abiotic stress (microbes)
Environmental niche
Light
Nutrient deficiency - microbes
Responses to environment
Abstract:
In Antarctica, less than 0.2% of the land is ice-free for at least part of the year and so is able to support terrestrial life. As in all habitats, these ecosystems have as their basis the primary producers - that is organisms that photosynthesise by using the sun's energy to capture CO2 from the atmosphere and make sugars. Even so, in the Antarctic Peninsula, only 1.34% of this exposed ground is estimated to be vegetated. Satellite images can be used to determine vegetated areas on the ground because photosynthetic organisms have distinct colours that can be detected. Perhaps surprisingly, when some of these areas have been inspected directly - in a process called ground-validation - a major group of photosynthetic organisms are snow-algae living on the surface of (or just below) the snow fields. Many species have dormant stages where they make red pigments - this has led to them being mistaken for drops of blood in the snow. As well as the fact that snow algae may be one of the major primary producers, they are also important for cycling nutrients in the habitable terrestrial regions of Antarctica. As the snow melts they are washed off into the surrounding environments providing nutrients to the adjacent land and into the sea. The contribution of snow algae to these ecosystems, both in absolute terms and relative to the area of 'true' terrestrial habitat in the Antarctic, is therefore likely to be considerable. Recently, we have carried out studies to make the first-ever large-scale area and biomass distribution map of snow algae across the whole of the Antarctic Peninsula. Essentially we have been able to record for the first time the third largest terrestrial photosynthetic ecosystem on the Antarctic Peninsula after mosses and lichens. We detected 1679 green snow algae blooms covering approximately 1.9km2, which overall was estimated to weigh 1327 tonnes and taking up 1757 tonnes of CO2 per year. We found that these blooms were influenced by both temperature and nutrients with 60% of blooms being within 5km of a penguin colony. We also found that 62% of blooms were on small, low-lying islands that, should the Peninsula continue to warm, will lose their summer snow cover along with their snow algae. However, the other larger blooms were found further north on the Peninsula, on sites that would allow the blooms to expand onto higher ground. Now we have the initial estimates of where and how much snow algae there is in one part of Antarctica it is important that we work out 1: where snow algae are in the rest of Antarctica 2, increase the detection sensitivity of our methods by using drones to detect the red as well as green blooms 3, the range of temperatures, nutrients and light required for the snow algae to bloom 4, how the snow algae compare to other major plants in the region such as lichens and mosses and 5, whether the snow algae species across Antarctica are all the same and what are they made of. We will also look at historical satellite images of Antarctica to see if the blooms are spreading, decreasing or have remained in the same places. To do this we need to carry out a comprehensive survey of snow algae blooms from detected sites all the way along the Antarctic Peninsula in 2021 and then studying one very large bloom for a whole growth season in 2022. There we will ground-truth the blooms and other vegetation and to carry out a detailed analysis of the nutrients in the snow and the photosynthetic activity of the snow algae and other plants in the area. This will allow us to estimate their overall contribution to the polar carbon budget. Once we have all this information we can make detailed models to predict how the snow algae blooms will change in location, size, biomass and species in the coming years. Overall, this will be a significant advance in our understanding of the Antarctic terrestrial ecosystem.
Period of Award:
1 Feb 2021 - 31 Jan 2025
Value:
£86,072 Split Award
Authorised funds only
NERC Reference:
NE/V000896/1
Grant Stage:
Awaiting Event/Action
Scheme:
Standard Grant FEC
Grant Status:
Active

This grant award has a total value of £86,072  

top of page


FDAB - Financial Details (Award breakdown by headings)

DI - Other CostsIndirect - Indirect CostsDA - InvestigatorsDA - Estate CostsDA - Other Directly AllocatedDI - T&S
£4,902£21,348£40,465£7,604£7,181£4,573

If you need further help, please read the user guide.