Skip to content
Natural Environment Research Council
Grants on the Web - Return to homepage Logo

Details of Award

NERC Reference : NE/T007095/1

Cross-season legacy effects of climate extremes on alpine soil microbial communities: resilience, regimes shifts and biogeochemical cycles

Grant Award

Principal Investigator:
Dr RI Griffiths, UK Centre for Ecology & Hydrology, Soils and Land Use (Bangor)
Science Area:
Terrestrial
Overall Classification:
Panel C
ENRIs:
Biodiversity
Global Change
Natural Resource Management
Science Topics:
Community Ecology
Responses to environment
Biogeochemical Cycles
Ecosystem Scale Processes
Soil science
Abstract:
Soil contains a vast diversity of microbial that is an important driver of the biogeochemical cycles on which the functioning of earth depends. These soil microbial communities are vulnerable to environmental changes caused by human actions, including land use and climate change. However, our understanding of how shifts in microbial communities resulting from environmental change influences the global biogeochemical cycles they support is poor. This lack of knowledge is exacerbated by most studies investigating only one facet of environmental change: in the real world, human actions are causing multiple and simultaneous changes to the environment, including climate extremes that are expected to become more intense and frequent with on-going climate change. This is what this proposal is about: understanding how seasonally distinct climate extremes combine to impact soil microbial communities and the crucial biogeochemical cycles that they support. We do this in high mountain ecosystems, which cover a large part of the Earth's land surface, support high levels of biodiversity, and provide a host of services for humankind, including the storage of vast amounts of carbon, nutrients and water. Moreover, mountains are under considerable threat from climate and land use change. Climate change, for example, has been taking place in the mountains at almost double the rate of the northern hemisphere average, leading to less snow in winter, which reduces insulation of the ground and increases freeze-thaw activity, and less rain in summer, which causes prolonged drought. Yet, how these two factors combine to affect soil microbial communities, and is poorly understood. Furthermore, farming in mountains is also changing, with traditional grazing practices being abandoned in many mountains areas, which is causing encroachment of dwarf shrubs into the alpine zone. Put simply, mountain areas are at the front line of global change, but the consequences for microbial communities and the biogeochemical processes that they perform remain poorly understood. Whilst soil microbes can often resist or recover from individual environmental perturbations, they may not be able to withstand multiple shocks happening in quick succession. Reduced snow in winter, followed immediately by severe summer droughts may tip soil microbial communities, and the nutrient cycling functions they perform, into alternative states. When such a shift occurs, the structure of the soil microbial community, and its capacity to cycle key nutrients will be permanently altered. Alarmingly, we do not know under which conditions such regimes shifts in microbial communities will occur, or whether changes in land-use practices will affect the outcome. Nor do we know what it will mean for global biogeochemical cycles, which is surprising considering the vast amounts of carbon stored in alpine soils, and the importance of nitrogen cycling for agricultural activities. This proposal tackles this issue head on, testing how reduced snow cover and summer drought affects the diversity and function of soil microbial communities and the consequences for biogeochemical cycles in these understudied ecosystems. We will tackle the following so far unexplored questions. Does one type of climate extreme impair the ability of soil microbial communities, and the biogeochemical cycles they support, to resist and recover from further perturbations? At what frequencies and severities of summer drought do microbial communities tip into an alternative state? Does encroachment of shrubs dampen the combined effect of seasonally distinct climate extremes on soil microbial communities? By testing these questions, we will gain novel, transformative understanding of the structure, function, and dynamics of microbial communities, and how this links to biogeochemical cycling, and we will do so in situ in the context of ongoing and rapid environment change in an understudied and vulnerable natural ecosystem.
Period of Award:
1 May 2020 - 30 Apr 2023
Value:
£94,556 Split Award
Authorised funds only
NERC Reference:
NE/T007095/1
Grant Stage:
Completed
Scheme:
Standard Grant FEC
Grant Status:
Closed
Programme:
Standard Grant

This grant award has a total value of £94,556  

top of page


FDAB - Financial Details (Award breakdown by headings)

DI - Other CostsIndirect - Indirect CostsDA - Estate CostsDI - StaffDI - T&S
£22,359£25,504£11,686£33,585£1,422

If you need further help, please read the user guide.