Skip to content
Natural Environment Research Council
Grants on the Web - Return to homepage Logo

Details of Award

NERC Reference : NE/T002026/1

Interactions between eruptive activity and sector collapse at Anak Krakatau, Indonesia

Grant Award

Principal Investigator:
Dr S Watt, University of Birmingham, Sch of Geography, Earth & Env Sciences
Co-Investigator:
Professor M Burton, The University of Manchester, Earth Atmospheric and Env Sciences
Co-Investigator:
Dr M Cassidy, University of Birmingham, Sch of Geography, Earth & Env Sciences
Science Area:
Atmospheric
Earth
Marine
Overall Classification:
Panel A
ENRIs:
Environmental Risks and Hazards
Science Topics:
Geohazards
Sediment/Sedimentary Processes
Volcanic Processes
Abstract:
Anak Krakatau volcano, Indonesia, collapsed catastrophically on 22nd December 2018, forming a landslide-generated tsunami that caused over 400 deaths on surrounding coastlines. Very few volcanic landslides of this size and type, known as sector collapses, have been studied in detail. Because of this, our understanding of the factors that lead to sector collapse, and therefore our capacity to forecast such events and their associated hazards, remains relatively limited. Although there have been few historical examples of large volcanic landslides, they are common on longer, geological timescales and occur across all volcanic settings. The collapse of Anak Krakatau thus provides an important opportunity to improve our knowledge of this fundamental volcanic process. Anak Krakatau is the volcanic island that formed after the devastating eruption of Krakatau (also known as Krakatoa) in 1883, first emerging above sea level in 1929. Approximately half of the subaerial island of Anak Krakatau was removed by its recent sector collapse. The collapse occurred during an ongoing, relatively low-intensity eruption, similar to the type of activity that had characterised previous decades. However, satellite observations suggest that this style of activity changed around the time of the collapse, to a much more powerful explosive eruption. The precise timing of this change, and its potential role in the collapse, is something we will explore in detail in this research. Following the collapse, explosive activity continued and may have changed yet again, as seawater interacted with shallow erupting magma. This later stage of activity erupted large volumes of new material, rapidly filling the landslide scar and extending the island coastline in the days after the collapse. Our research will determine the specific role of eruptive activity in the sector collapse of Anak Krakatau. We will address whether changes in eruption behaviour, involving the ascent of fresh magma, preceded the collapse and thus acted as a trigger; or whether it was the collapse itself which led to the powerful explosive eruption, by suddenly depressurising the shallow magma stored beneath the volcano. We will also define the nature of eruptive activity that took place immediately after the collapse. In this phase of the eruption, material appears to have been ejected at a very high rate, and we will test the hypothesis that the collapse destabilised the underlying magma system, leading to a change in eruption behaviour. Such processes may be common at volcanoes affected by large sector collapses, forming part of a cycle of destruction and regrowth, but are currently poorly understood. Our work will draw upon detailed field sampling of eruption deposits spanning the collapse period. Field datasets will be interpreted alongside satellite imagery and other remote observations, numerical models that simulate eruption processes, and analyses of the chemical and textural record of magmatic processes preserved in our eruption-deposit samples. Together, our results will allow us to identify changes in the storage conditions, ascent rate and eruptive behaviour of magmas involved in different stages of activity. Our results will allow us to explore controls on the timing of the sector collapse, the role of eruptive activity in the collapse, and the impact the collapse itself had on the underlying magma system. By producing a comprehensive record of the Anak Krakatau collapse and eruptions, we will advance our understanding of volcanic sector collapses in general. We will also develop a much clearer picture of eruption processes and instabilities at Anak Krakatau, which will inform hazard mitigation plans for potential future landslides as the volcano regrows.
Period of Award:
1 May 2019 - 30 Oct 2020
Value:
£41,920 Lead Split Award
Authorised funds only
NERC Reference:
NE/T002026/1
Grant Stage:
Completed
Scheme:
Standard Grant FEC
Grant Status:
Closed
Programme:
Urgent Grant

This grant award has a total value of £41,920  

top of page


FDAB - Financial Details (Award breakdown by headings)

DI - Other CostsIndirect - Indirect CostsDA - InvestigatorsDA - Estate CostsDI - StaffDI - T&SDA - Other Directly Allocated
£7,765£8,858£8,680£2,785£5,389£8,250£194

If you need further help, please read the user guide.