This site is using cookies to collect anonymous visitor statistics and enhance the user experience.  OK | Find out more

Skip to content
Natural Environment Research Council
Grants on the Web - Return to homepage Logo

Details of Award

NERC Reference : NE/P019714/1

Releasing divalent cations to sequester carbon on land and sea

Grant Award

Principal Investigator:
Professor S Redfern, University of Cambridge, Earth Sciences
Science Area:
Atmospheric
Earth
Freshwater
Marine
Terrestrial
Overall Classification:
Unknown
ENRIs:
Biodiversity
Environmental Risks and Hazards
Global Change
Natural Resource Management
Pollution and Waste
Science Topics:
Climate & Climate Change
Waste Minimisation
Properties Of Earth Materials
Biogeochemical Cycles
Land - Ocean Interactions
Abstract:
The natural response of the carbon cycle to the warming induced by increased atmospheric CO2 features two negative feedbacks that remove CO2 from the atmosphere. One, caused by the greater acidity of the oceans, is for carbonate minerals to be dissolved, which causes an increase in the ability of seawater to contain carbon (as the bicarbonate ion). The other is for warmer conditions to increase the rate at which silicate minerals dissolve, with the products either precipitated as carbonate minerals, or flowing to the oceans. This silicate weathering also removes CO2 from the atmosphere. Intentional acceleration of these two weathering feedbacks is a potential approach to remove the CO2 added to the atmosphere by burning of fossil fuels, and therefore alleviate extreme climate change. Such an approach is challenging, however, because to be useful at a significant scale (i.e. 1-10 GtC pa removal), requires a dramatic increase in weathering relative to natural rates. Whether such accelerated weathering is a feasible route to remove significant atmospheric CO2 is unknown. This proposal will address this unknown, and provide a comprehensive assessment of the feasibility of CO2 removal by accelerated weathering, including consideration of the technical, economic, environmental, and societal aspects of the approach. The core of our work will be a life-cycle assessment of the enhanced-weathering approaches that might lead to 1-10Gt removal of CO2 per year. This modelling will start from the availability of minerals for weathering, paying particular but not exclusive attention to waste materials from industries such as mining. It will consider how the weathering of these minerals might be enhanced, either through treatment in mining waste piles or, in collaboration with project partners, by addition to soils. It will also consider the fate of the weathered materials, either as carbonate on land or in the sea, or as alkalinity in the sea. It will assess the economic cost of such approaches, the energy requirements, the environmental damage they would cause, and the societal limitations on such approaches (e.g. social acceptability, political, legal, governance). In some key areas, understanding is not yet sufficient to allow this life-cycle assessment. We will address these gaps in knowledge by five specific pieces of research. These will: 1. Characterise how much waste material is available for enhanced weathering, including its location, its grain size, and its chemistry and mineralogy. This is critical information to underpin the life-cycle assessment. 2. Measure how quickly typical minerals weather and how this weathering rate changes with temperature and, particularly, through addition of microbes that are known to cause accelerated weathering of silicates. 3. Assess how best to scale up weathering to the 1-10GtC pa level. This will be done by both modelling of possible engineered approached to weathering, and by experiments on piles of silicate and carbonate minerals (each of 10 cubic meters), in which the conditions are altered and responses measured. 4. Assess the response of the ocean to increased alkalinity resulting from enhanced weathering. If more carbonate is produced in the ocean, it reduces the effectiveness of enhanced weathering; we will measure the rates of both inorganic and biological carbonate formation and their impact in the C cycle globally. 5. Consider how society will response to possible scenarios for accelerated weathering, and whether this may limit such an approach. Will enhanced weathering be socially acceptable? Will there be the political will to pursue it? Are their legal or governance barriers?
Period of Award:
1 Jul 2017 - 31 Dec 2020
Value:
£204,614 Split Award
Authorised funds only
NERC Reference:
NE/P019714/1
Grant Stage:
Completed
Scheme:
Directed (Research Programmes)
Grant Status:
Closed

This grant award has a total value of £204,614  

top of page


FDAB - Financial Details (Award breakdown by headings)

DI - Other CostsIndirect - Indirect CostsDA - InvestigatorsDI - StaffDA - Estate CostsDI - T&SDA - Other Directly Allocated
£9,431£67,649£11,843£72,006£24,831£4,877£13,974

If you need further help, please read the user guide.