This site is using cookies to collect anonymous visitor statistics and enhance the user experience.  OK | Find out more

Skip to content
Natural Environment Research Council
Grants on the Web - Return to homepage Logo

Details of Award

NERC Reference : NE/P013805/1

The evolution of vegetation and biodiversity change during the Paleogene and early Neogene

Grant Award

Principal Investigator:
Professor P Valdes, University of Bristol, Geographical Sciences
Co-Investigator:
Professor D Lunt, University of Bristol, Geographical Sciences
Co-Investigator:
Professor RD Pancost, University of Bristol, Chemistry
Science Area:
Atmospheric
Earth
Freshwater
Marine
Terrestrial
Overall Classification:
Unknown
ENRIs:
Biodiversity
Environmental Risks and Hazards
Global Change
Natural Resource Management
Pollution and Waste
Science Topics:
Climate & Climate Change
Palaeoenvironments
Population Ecology
Palaeoenvironments
Abstract:
The Asian monsoon system is a major feature of the Earths climate and impacts on almost half of the population of the world. The monsoon also has a profound effect on the regions flora, fauna and ecosystems. Moreover large parts of China are also noted for their exceptionally high biodiversity. We also know that the monsoon system has changed over geological time and this is intimately linked to the growth of Tibet and the Himalayas which occurred during the Paleogene (66 to 23 million years ago) and early Neogene (23 million years ago to 3 million years ago). And finally we know that this time interval also witnessed the birth of this modern vegetation patterns. So how are all of these aspects linked together. Why is biodiversity so high in parts of China? When did these ecosystems develop? And how is this all connected to Tibetan uplift and the evolution of the monsoon? Our project aims to bring together a unique group of world leading researchers in palaecology, geology and climate modelling to identify the nature of ecological change during the Paleogene and early Neogene and establish the underlying mechanism of changes and thresholds. We will do this with a series of three field trips to span the latitudinal and elevation gradients within China, from Tibet, Yunnan and S. China. These field trips will enable us to collect new information on the changes in ecosystem and biodiversity. We will be able to assess the amount of change, and in a few key sites identify whether the changes have been smooth or relatively abrupt, the latter indicating possible threshold behaviours of the system. We will also use this data to reconstruct estimates of the climate and palaeoelevation of the sites. This information can then be used to help develop and test climate, ecosystem, and biodiversity models. These models will allow us to identify the key mechanisms that have driven change in this region over geological time, and the interactions between the ecosystem and climate change. The outcomes will be a fuller understanding of the evolution of life on the planet, and will also enable a unique evaluation of the models used for future climate change projections.
Period of Award:
9 Jan 2017 - 8 Jan 2022
Value:
£1,069,227
Authorised funds only
NERC Reference:
NE/P013805/1
Grant Stage:
Completed
Scheme:
Directed - International
Grant Status:
Closed
Programme:
BETR

This grant award has a total value of £1,069,227  

top of page


FDAB - Financial Details (Award breakdown by headings)

DI - Other CostsIndirect - Indirect CostsDA - InvestigatorsDA - Estate CostsDI - StaffDI - T&S
£71,462£391,577£148,082£63,549£341,576£52,980

If you need further help, please read the user guide.