Skip to content
Natural Environment Research Council
Grants on the Web - Return to homepage Logo

Details of Award

NERC Reference : NE/P012361/1

NSFGEO-NERC: A Thermodynamic Chemical Speciation Model for the Oceans, Seas, and Estuaries

Grant Award

Principal Investigator:
Professor SL Clegg, University of East Anglia, Environmental Sciences
Science Area:
Atmospheric
Earth
Freshwater
Marine
Terrestrial
Overall Classification:
Panel B
ENRIs:
Biodiversity
Environmental Risks and Hazards
Global Change
Natural Resource Management
Pollution and Waste
Science Topics:
Ocean acidification
Palaeoenvironments
Biogeochemical Cycles
Water quality
Ocean acidification
Coastal margins
Ocean acidification
Water quality
Biogeochemical Cycles
Abstract:
Ocean acidification due to the dissolution of anthropogenic CO2, and the effects of cumulative stressors (including acidification, pollution, warming, and anoxia) are among the top priorities for ocean research, requiring accurate and consistent measurements across the globe to monitor and understand present effects, and modelling to evaluate future scenarios and methods of remediation. The work of observational scientists and modellers is linked by the need for an accurate knowledge of the chemical speciation of the inorganic carbonate system, pH, and nutrient and contaminate trace metals, in both natural waters and the reference materials and solutions used for instrument calibration. Chemical speciation is defined as the distribution of a chemical element between different molecular and ionic forms in seawater, and determines its reactivity and bioavailability. Speciation depends on the value of the relevant thermodynamic equilibrium constant, and on the activities of each of the dissolved ions and molecules. These are complex functions of temperature, pressure, and salinity (or, more generally, solution composition), and cannot be predicted from theory. Many of the important reactions in seawater involve acid-base equilibria, which introduces pH as an additional variable. Despite the importance of chemical speciation, the available calculation tools are often only simple empirical equations that yield equilibrium constants for reactions as functions of salinity and temperature. Such equations cannot be used for many important natural waters whose composition differs from that of normal seawater (e.g., polar brines, estuaries, pore-waters, enclosed seas, and paleo-oceans). Furthermore, human-driven changes in seawater pH and carbonate chemistry in shelf seas and estuaries are complicated by the effects of eutrophication, upwelling, the dissolved solutes contained in river water, and changes in metal toxicity accompanying pH change. Consequently, despite the best efforts of physical chemists over the last several decades, there is not yet the ability to calculate the equilibria controlling the chemical factors impacting shellfish and a broader range of marine fauna in the brackish/mesohaline environments typical of many estuaries and coasts. We will create a step change in the capability of marine scientists to measure, interpret, and predict chemical speciation and pH in natural waters of varying composition by creating a speciation model based upon the Pitzer equations for the calculation of solute and water activities. The approach has a long track record of success in geochemistry. The equations are based upon the concept that interactions between pairs and triplets of dissolved solute species control activities. The values of the parameters for these interactions are determined from a wide range of measurements of solution properties. Work in this project will include measuring activities and heat capacities, and using recent literature data, to improve and test the model; the computer coding and validation of the model and the development of methods to quantify the relationship between uncertainties in model-predicted speciation and those in the underlying measurements; and engagement with oceanographers internationally to help design practical speciation modelling tools and associated guidance for specific applications. The completed model will enable the activities and speciation of all seawater components to be calculated within a unified framework that, (i) includes the major and trace elements in seawater and its mixtures with freshwaters, (ii) includes other saline environments of differing composition, and (iii) encompasses the buffers that are used to calibrate pH and other instruments, and. Our results will this advance the quantitative understanding of chemical speciation - from ocean measurements to ecosystem models - for an expanded range of natural water bodies and marine environments.
Period of Award:
1 Nov 2017 - 30 Jun 2023
Value:
£368,097
Authorised funds only
NERC Reference:
NE/P012361/1
Grant Stage:
Completed
Scheme:
Standard Grant FEC
Grant Status:
Closed
Programme:
Standard Grant

This grant award has a total value of £368,097  

top of page


FDAB - Financial Details (Award breakdown by headings)

DI - Other CostsIndirect - Indirect CostsDA - InvestigatorsDA - Estate CostsDI - StaffDA - Other Directly AllocatedDI - T&S
£28,350£122,392£39,758£48,467£112,590£2,151£14,391

If you need further help, please read the user guide.