Details of Award
NERC Reference : NE/P002374/1
Identifying the mechanisms and resource use implications of acclimation to high-temperature in marine cyanobacteria.
Grant Award
- Principal Investigator:
- Professor T Lawson, University of Essex, Life Sciences
- Co-Investigator:
- Dr U Bechtold, Durham University, Biosciences
- Co-Investigator:
- Dr MV Metodiev, University of Essex, Life Sciences
- Co-Investigator:
- Professor N Smirnoff, University of Exeter, Biosciences
- Grant held at:
- University of Essex, Life Sciences
- Science Area:
- Freshwater
- Marine
- Overall Classification:
- Panel D
- ENRIs:
- Global Change
- Science Topics:
- Biochemistry & physiology
- Temperature
- Responses to environment
- Metabolomics / Metabonomics
- Proteomics
- Transcriptomics
- Abstract:
- Sea surface temperature has increased by about 0.8 degrees Celcius since 1880 and is projected to increase by another 2 degrees by the year 2100. This will expose the plants and animals that live in tropical waters to temperatures that are warmer than their ancestors have experienced over the past million years. Included in these organisms are the photosynthetic microrganisms that provide the organic matter that supports marine food webs and facilitate transfer of carbon dioxide from the atmosphere to ocean. In tropical waters where temperatures are above about 25 degrees Celcius, phytoplankton are likely to experience direct negative effects of increased temperature on their physiology as they are often exposed to temperatures that are higher than the optimal temperature for their growth. This situation contrasts with that for temperate and polar waters where increased temperature may stimulate growth of the indigenous phytoplankton species or allow more thermally tolerant species to immigrate. Our research addresses the questions "How do cyanobacteria acclimate to temperatures that are supra-optimal for growth?" "What are the implications of this acclimation for their productivity in a warming ocean?" and "How can we account for acclimation to supra-optimal temperatures in models of cyanobacteria growth?" Unlike previous research on short-term (minutes to hours) responses of cyanobacteria, algae and vascular plants to heat shock, we propose to investigate the mechanisms of long-term (days to weeks) acclimation to heat stress and the implications of this acclimation for growth and physiology. As far as we are aware, this will be the first such investigation of long term acclimation to supra-optimal (heat) temperatures for an alga or a cyanobacterium, and as such will complement the more extensive literature on acclimation to sub-optimal (cold) temperatures in plants, algae and cyanobacteria by providing information that is particularly relevant in the face of global warming. We will employ a holistic approach using state-of-the-art methods to obtain this understanding. Transcriptomics will be used to generate the data to construct gene regulatory networks involved in sensing and responding to high temperature. Comparison of these networks amongst species with different tolerances to high temperature will be used to identify communalities and differences that may explain the observed thermal sensitivities. Proteomics and metabolomics will be used to assess the remodeling of cell metabolism that occurs as a consequence of acclimation to high temperature. Measurements of physiological rates, elemental composition (C, N, P) and biochemical composition will be used in an assessment of the system level outcomes of this acclimation in terms of biomass and productivity. The proposed comprehensive assessment of thermal acclimation is both timely and novel, and will contribute to continued excellence in a field where UK researchers make major impacts in a topic of global significance. Our research will help scientists to understand how global warming due to man's activities is changing a fundamental component of Earth's life support system. Marine phytoplankton produce about 50% of the oxygen that we breathe, and play a role over millennial times scales in regulating atmospheric carbon dioxide levels. The information that we obtain will be used in the further development of the increasingly sophisticated models of marine ecology that are used in making projections of how the ocean is responding to climate change. In addition, cyanobacteria are being investigated for their potential use in biotechnology for production of low value products such as protein for animal feed or lipids for production of bio-diesel, as well as high value products including nutritional supplements (carotenoids, fatty acids, polysaccharides, vitamins, sterols) for consumption by humans and other products (dyes, pharmaceuticals, adhesives, surfactants).
- NERC Reference:
- NE/P002374/1
- Grant Stage:
- Completed
- Scheme:
- Standard Grant FEC
- Grant Status:
- Closed
- Programme:
- Standard Grant
This grant award has a total value of £622,135
FDAB - Financial Details (Award breakdown by headings)
DI - Other Costs | Indirect - Indirect Costs | DA - Investigators | DI - Staff | DA - Estate Costs | DA - Other Directly Allocated | DI - T&S |
---|---|---|---|---|---|---|
£110,204 | £152,348 | £85,360 | £120,449 | £36,706 | £98,102 | £18,967 |
If you need further help, please read the user guide.