Details of Award
NERC Reference : NE/N009894/1
Regime change: convection and crystallisation of magma
Grant Award
- Principal Investigator:
- Professor M Holness, University of Cambridge, Earth Sciences
- Co-Investigator:
- Professor JA Neufeld, University of Cambridge, Earth Sciences
- Co-Investigator:
- Dr E Mariani, University of Liverpool, Earth, Ocean and Ecological Sciences
- Grant held at:
- University of Cambridge, Earth Sciences
- Science Area:
- Atmospheric
- Earth
- Freshwater
- Marine
- Terrestrial
- Overall Classification:
- Panel A
- ENRIs:
- Biodiversity
- Environmental Risks and Hazards
- Global Change
- Natural Resource Management
- Pollution and Waste
- Science Topics:
- Tectonic Processes
- Igneous petrology
- Microstructure analysis
- Materials Characterisation
- Abstract:
- The cooling of poly-component liquids, such as magma (and also ice-cream and salt- or sea-water), can drive solidification in a bewildering array of styles. Often the solid that forms is of a different composition from the liquid (e.g. pure ice from salt water). This means that the composition and temperature of the residual liquid is always changing during cooling, causing changes in the density of the liquid. These density changes can drive convection in the liquid, and can have profound effects on the way in which mass and heat are transported within the crystallising system. When cooling rates are gentle solidification occurs from the cold boundaries as when ice forms on the pond on a still winter's day. In contrast, when cooling rates are very high, vigorous convection in the liquid can drive crystallization away from the cold boundaries, forming a flurry of crystallization in the swirling interior. In the context of bodies of molten rock (magma) the way convective motion can re-distribute mass has significant effects on the way the residual liquid changes composition. This plays a vital role in determining the final composition (and hence the explosivity) of any erupted lava flows. The style of crystallization also affects how quickly a magma conduit feeding a surface eruption will freeze sufficiently to prevent more magma travelling along it. A further important reason to understand how convection controls the way magmas evolve in crustal magma chambers is because the only way we can make deductions about processes occurring in the inaccessible deep Earth is by an examination of the composition of erupted lavas. The project will involve creating small-scale, bench-top analogues for real magma bodies using salt-water solutions. We will be able to control the cooling and solidification rates in our tanks and watch directly what happens and where the crystals are forming - something that is not possible in real magmas. We will compare our experimental results with natural examples of basaltic, magmatic intrusions by taking advantage of some recent new discoveries that mean we can decode the record of crystallization style left in fully-solidified basaltic intrusions and flows using details of grain shape, internal compositional variations and the spatial distribution of dense minerals. These microstructural markers will enable us to work out whether the liquid in the magma bodies convected or was static during solidification. These discoveries provide an exciting opportunity to make real progress in understanding the fundamental processes at work as these bodies cooled.
- NERC Reference:
- NE/N009894/1
- Grant Stage:
- Completed
- Scheme:
- Standard Grant FEC
- Grant Status:
- Closed
- Programme:
- Standard Grant
This grant award has a total value of £456,498
FDAB - Financial Details (Award breakdown by headings)
DI - Other Costs | Indirect - Indirect Costs | DA - Investigators | DI - Equipment | DA - Estate Costs | DI - Staff | DI - T&S | DA - Other Directly Allocated |
---|---|---|---|---|---|---|---|
£59,970 | £130,845 | £54,598 | £16,382 | £47,837 | £118,761 | £10,770 | £17,334 |
If you need further help, please read the user guide.