Skip to content
Natural Environment Research Council
Grants on the Web - Return to homepage Logo

Details of Award

NERC Reference : NE/N001745/2

Mechanisms Responsible for Mesoscale Eddy Energy Dissipation (MeRMEED)

Grant Award

Principal Investigator:
Professor E Frajka-Williams, NOC (Up to 31.10.2019), Science and Technology
Co-Investigator:
Professor A Naveira Garabato, University of Southampton, Sch of Ocean and Earth Science
Science Area:
Marine
Overall Classification:
Panel B
ENRIs:
Global Change
Science Topics:
Climate & Climate Change
Ocean Circulation
Land - Ocean Interactions
Abstract:
Over the last decades, oceanographers have been searching for the missing mixing in the ocean to complete the ocean energy budget. Answering questions of where energy is added to the oceans, and where it is removed, helps us to understand the drivers of ocean circulation. With the advent of high-resolution satellite measurements of surface currents in the 1990s, scientists could see that the oceans were filled with swirling vortices of water called mesoscale eddies. While eddies are present in all ocean basins, with currents inside the eddies sometimes exceeding 1 m/s, they disappear from satellite measurements preferentially at western boundaries. There are several possibilities for why eddies disappear at western boundaries: they may radiate energy away, contribute energy to large scale ocean circulation, or lose energy locally through turbulence and dissipation. Of these candidate terms, previous work has suggested that local dissipation is strong enough to explain a substantial part of the eddy disappearance. Our aim is to determine how and why eddies are losing energy at the western boundaries. These results and our measurements will then be made available to scientists involved in numerical simulations of the ocean. As a longer-term goal, the results of our research may help guide how eddies are represented in ocean models, which is one of the critical areas needing improvement in climate simulations. However, due to the fledgling nature of the science in this field, that eventual goal is still several steps away. Fundamental physics dictate that most eddies move slowly westward, and these eddies are visible in satellite measurements of sea surface height a few months before they arrive at the boundary. In the project MeRMEED, we will watch the eddies in near real-time satellite data, and when an appropriate eddy approaches the east coast of North America, we will deploy a small team of researchers, with advanced instruments, to meet the eddy upon arrival. There, we will survey the eddy using high-resolution profilers deployed from small boats and autonomous underwater vehicles called Seagliders. After the ship-based survey is completed, the gliders will continue to observe the eddies for several months, as the eddies are slowly disappearing. These gliders transmit their measurements via satellite communications back to our base station in England. We also plan to use the existing observations from the joint UK/US-funded RAPID programme, measuring ocean circulation at 26N. We will install additional high-resolution velocity and temperature meters on one of these moorings, to make continuous observations of the eddies over 18 months. From the survey, glider and moored measurements, we will be able to assess how important local dissipation is to the disappearance of eddies. We will use our findings to shed light on the processes responsible for eddy disappearance from the oceans, and how those processes change in time.
Period of Award:
15 Aug 2018 - 31 Oct 2019
Value:
£269,783
Authorised funds only
NERC Reference:
NE/N001745/2
Grant Stage:
Completed
Scheme:
Standard Grant FEC
Grant Status:
Closed

This grant award has a total value of £269,783  

top of page


FDAB - Financial Details (Award breakdown by headings)

DI - Other CostsException - Other CostsIndirect - Indirect CostsDA - InvestigatorsDI - EquipmentDA - Estate CostsDI - StaffDA - Other Directly AllocatedDI - T&S
£57,888£55,703£42,030£9,734£5,132£15,386£39,433£2,318£42,159

If you need further help, please read the user guide.