Skip to content
Natural Environment Research Council
Grants on the Web - Return to homepage Logo

Details of Award

NERC Reference : NE/N001508/1

High accuracy transition intensities for ozone

Grant Award

Principal Investigator:
Professor J Tennyson, University College London, Physics and Astronomy
Science Area:
Atmospheric
Overall Classification:
Panel B
ENRIs:
Environmental Risks and Hazards
Science Topics:
Radiative Processes & Effects
Stratospheric Processes
Tropospheric Processes
Scattering & Spectroscopy
Abstract:
Ozone is present in low concentrations throughout the Earth's atmosphere. In the troposphere ozone is a pollutant which largely results from human activity. However, ozone is harmful to humans, animals and plants at even trace concentrations. Conversely stratospheric ozone, the ``ozone layer'', provides an extremely important shield of solar ultraviolet radiation. Human activity has resulted in a significant reduction in stratospheric ozone and this loss has lead to increased holes at the poles. Studies of atmospheric ozone concentrations rely heavily on the use of spectroscopic remote sensing from a mixture of ground-based, airborne and satellite instruments. These instruments observe the characteristic absorption features of ozone either in the infrared or the ultraviolet. Retrievals based on these observations require accurate laboratory data to make them useful. In particular the many studies of atmospheric currently being conducted require intensity / cross section data for both ultraviolet (UV) and infrared (IR) which is accurate to 1% or better. Unfortunately, as has been extensively documented in the scientific literature, the situation with the laboratory intensity determinations is far from satisfactory. Firstly, there are many measurements showing systematic differences between atmospheric studies performed at infrared and ultraviolet wavelengths at the 4 to 5 % level. Secondly, while laboratory measurements of the ultraviolet cross sections show a measure of agreement, those for the infrared do not. A recent (2012) analysis concluded that for the key 10 micron region agreement between measurements was only at best 4% with intensity discrepancies much higher than this. There are other discrepancies within the infrared region. There is an urgent need for a solution to this problem for missions such as TES+OMI on Aura satellite mission (NASA), IASI+GOME-2 on Metop satellite (ESA) AIRS on the Auqa satellite (NASA). The proposal will use high accuracy, first principles quantum mechanical methods to compute the transition intensities for both the IR and UV portions of the spectrum. For the IR region, methods of computing high accuracy dipole moment surfaces already used successful for water and CO2, will be employed. These will be combined with measured transition frequencies to complete line lists with intensities accurate to about 0.5%. New methodologies will be developed to transfer the experience gained computing IR vibration-rotation intensities (which require electronically diagonal dipole moments) to electronic transitions in the UV. Initial work will focus on the Huggins band and will also require further development of the methods used for treating nuclear motion. These calculations will provide complete independent assessment of the absolute line intensities / cross sections removed from experimental issues such as the ozone concentration. Results will be made widely available via the web, databases and submitted for inclusion in standard compilations used for atmospheric studies such as HITRAN. HITRAN will be a project partner on the proposal and undertake independent evaluation of the results.
Period of Award:
1 Aug 2015 - 31 Jul 2018
Value:
£347,048
Authorised funds only
NERC Reference:
NE/N001508/1
Grant Stage:
Completed
Scheme:
Standard Grant FEC
Grant Status:
Closed
Programme:
Standard Grant

This grant award has a total value of £347,048  

top of page


FDAB - Financial Details (Award breakdown by headings)

DI - Other CostsIndirect - Indirect CostsDA - InvestigatorsDA - Estate CostsDI - StaffDI - T&S
£8,131£113,741£41,687£35,107£142,285£6,097

If you need further help, please read the user guide.