Skip to content
Natural Environment Research Council
Grants on the Web - Return to homepage Logo

Details of Award

NERC Reference : NE/M005828/1

International Network for QBO Research (QBOnet)

Grant Award

Principal Investigator:
Professor LJ Gray, University of Oxford, Oxford Physics
Science Area:
Atmospheric
Overall Classification:
Atmospheric
ENRIs:
Global Change
Science Topics:
Stratospheric Processes
Tropospheric Processes
Climate & Climate Change
Abstract:
The atmosphere changes on time scales from seconds (or less) through to years. An example of the former are leaves swirling about the ground within a dust-devil, while an example of the latter is the quasibiennial oscillation (QBO) which occurs over the equator high up in the stratosphere. The QBO is seen as a slow meander of winds: from easterly to westerly to easterly over a time scale of about 2.5 years. This 'oscillation' is quite regular and so therefore is predictable out from months through to years. These winds have also been linked with weather events in the high latitude stratosphere during winter, and also with weather regimes in the North Atlantic and Europe. It is this combination of potential predictability and the association with weather which can affect people, businesses and ultimately economies which makes knowing more about these stratospheric winds desirable. However, it has been difficult to get this phenomenon reproduced in global climate models. We know that to get these winds in models one needs a good deal of (vertical) resolution. Perhaps better than 600-800m vertical resolution is needed. In most GCMs with a QBO this is the case, but why? We also know that there needs to be waves sloshing about, either ones that can be 'seen' in the models, or wave effects which are inferred by parameterisations. Get the right mix of waves and you can get a QBO. Get the wrong mix and you don't. Again we do not know entirely why. Furthermore, we also know convection bubbling up over the tropics and the slow migration of air upwards and out to the poles also has a big impact of resolving the QBO. All of these factors need to be constrained in some way to get a QBO. The trouble is that these factors are invariably different in different climate models. It is for this reason that getting a regular QBO in a climate model is so hard. This project is interested in exploring the sensitivity of the QBO to changes in resolution, diffusion and physics processes in lots of climate models and in reanalyses (models used with observations). To achieve this, we are seeking to bring together all the main modelling centres around the world and all the main researchers interested in the QBO to explore more robust ways of modelling this phenomena and looking for commonalities and differences in reanalyses. We hope that by doing this, we may get more modelling centres interested and thereby improve the number of models which can reproduce the QBO. We also hope that we can get a better understanding of those impacts seen in the North-Atlantic and around Europe and these may affect our seasonal predictions. The primary objective of QBOnet is to facilitate major advances in our understanding and modelling of the QBO by galvanizing international collaboration amongst researchers that are actively working on the QBO. Secondary objectives include: (1) Establish the methods and experiments required to most efficiently compare dominant processes involved in maintaining the QBO in different models and how they are modified by resolution, numerical representation and physics parameterisation. (2) Facilitate (1) by way of targeted visits by the PI and researchers with project partners and through a 3-4 day Workshop (3) Setup and promote a shared computing resource for both the QBOi and S-RIP QBO projects on the JASMIN facility
Period of Award:
1 Sep 2014 - 31 Dec 2016
Value:
£37,887
Authorised funds only
NERC Reference:
NE/M005828/1
Grant Stage:
Completed
Scheme:
IOF
Grant Status:
Closed
Programme:
IOF

This grant award has a total value of £37,887  

top of page


FDAB - Financial Details (Award breakdown by headings)

Indirect - Indirect CostsDA - InvestigatorsDI - StaffDA - Estate CostsDA - Other Directly AllocatedDI - T&S
£7,670£6,314£6,616£3,010£104£14,170

If you need further help, please read the user guide.