Skip to content
Natural Environment Research Council
Grants on the Web - Return to homepage Logo

Details of Award

NERC Reference : NE/L013371/1

Integrated Nitrogen Management System (Pump priming)

Grant Award

Principal Investigator:
Professor MA Sutton, NERC CEH (Up to 30.11.2019), Atmospheric Chemistry and Effects
Co-Investigator:
Professor S Reis, UK Centre for Ecology & Hydrology, Atmospheric Chemistry and Effects
Science Area:
Atmospheric
Earth
Freshwater
Marine
Terrestrial
Overall Classification:
Atmospheric
ENRIs:
Global Change
Natural Resource Management
Pollution and Waste
Biodiversity
Environmental Risks and Hazards
Science Topics:
Biogeochemical Cycles
Land - Ocean Interactions
Pollution
Earth & environmental
Climate & Climate Change
Abstract:
Nitrogen compounds are essential for life. They are needed to make many biological compounds including proteins, amino acids, DNA and ATP (the 'fuel source' of cells), without which no living organism could survive. Nitrogen is particularly important because it often limits food production, while high levels of N compounds in the environment lead to serious pollution problems. By supplying N fertilizers, farmers greatly improve their yields. This has been essential to feed the growing world population over the last century, with N fertilizers estimated to sustain ~3.5 billion people, almost half of humanity. While the increased manufacture and mobilization of reactive N sources can be seen as a great feat of 'geoengineering', there have been many unintended consequences. A growing human population needs more food, so more fertilizers, especially as we now eat more animal products per person. The result is a complex web of pollution issues, threatening water, air and soil quality, altering climate balance and impacting on ecosystems and human health. In addition to the loss of N from farms, other sources cannot be forgotten. These include air emissions from burning, and losses to water from sewage systems. Overall, human alteration of the global N cycle makes for a multi-issue problem that ranks alongside climate change as one of the great challenges of the 21st century. The European Nitrogen Assessment has estimated that N pollution alone causes 70-320 billion Euro per year of damage across the EU (Nature, 14 April 2011,472,159). Given the wide diversity of nitrogen loss pathways into the environment, there are many potential solutions. In a recent report 'Our Nutrient World' led by CEH for the United Nations Environment Programme (UNEP, launched Feb 2013), 10 key actions were identified which would contribute to better nutrient management, simultaneously helping to meet food security goals while reducing the pollution of air, land and water, with multiple benefits for ecosystems, climate and human health. However, 'Our Nutrient World' also identified that there is currently no global international agreement that links the many benefits and threats of nitrogen. As a result, there is also no coordinated scientific assessment and support process to quantify and demonstrate these linkages. This gap is now being addressed by the International Opportunities Fund (IOF) of the NERC through its support for a new endeavour "Pump priming to towards the International Nitrogen Management System" - or 'INMSpp' for short. The central idea is that a scientific support system is needed that can provide the evidence needed to show how joined-up management of the global nitrogen cycle will deliver multiple benefits, and to be able to evaluate options that policy makers may wish to consider. Already there is a developing ambition for INMS as reflected by the invitation from the UN Global Environment Facility (GEF) for the NERC Centre for Ecology and Hydrology (CEH) to work with UNEP to develop a concept to establish a future INMS approach. Ultimately this would be a major endeavour, linking indicators, models and datasets to allow evaluation of possible international agreements. The INMS pump priming project provides a key step towards this eventual goal. As one of the key challenges to establish model chains from source to impact to mitigation and adaptation the INMSpp project has taken on the task of working out how integrated global modelling of the nitrogen cycle should be developed. The project will bring together a global consortium to examine how models can be joined up to demonstrate the net benefits of better nitrogen management. This will be a key resource as the INMS approach is developed. The outcome is the prospect to show how linking up different international environmental agreements can build common ground, simultaneously supporting food and energy security and a cleaner environment.
Period of Award:
1 Apr 2014 - 31 Jul 2017
Value:
£155,227 Lead Split Award
Authorised funds only
NERC Reference:
NE/L013371/1
Grant Stage:
Completed
Scheme:
IOF
Grant Status:
Closed
Programme:
IOF

This grant award has a total value of £155,227  

top of page


FDAB - Financial Details (Award breakdown by headings)

DI - Other CostsIndirect - Indirect CostsDI - StaffDA - Estate CostsDI - T&S
£19,846£18,475£37,455£7,742£71,710

If you need further help, please read the user guide.