Skip to content
Natural Environment Research Council
Grants on the Web - Return to homepage Logo

Details of Award

NERC Reference : NE/L012375/1

Supra-terahertz technology for atmospheric observations of the mesosphere and lower thermosphere

Grant Award

Principal Investigator:
Professor B Ellison, STFC - Laboratories, RAL Space
Co-Investigator:
Dr D Gerber, STFC - Laboratories, RAL Space
Science Area:
Atmospheric
Overall Classification:
Atmospheric
ENRIs:
Global Change
Science Topics:
Upper Atmos Process & Geospace
Planetary Atmospheres
Instrumentation Eng. & Dev.
Remote Sensing & Earth Obs.
Technology and method dev
Abstract:
Advances in satellite remote-sensing measurements of the constituents of the Earth's mesosphere and lower thermosphere (MLT) have increased our knowledge of atmospheric composition over the last decade. Nonetheless, global measurements of key atmospheric species have not been made directly by previous satellite missions and these species, particularly atomic oxygen and the hydroxyl radical (OH), are targets for a low Earth orbit mission operating in the multi-terahertz (THz) spectral range (3 - 5 THz). A LOw Cost Upper-Atmosphere sounder (LOCUS) has therefore been proposed to ESA, which would be able to detect a broad range of important species (O, O3, OH, NO, CO, H2O and HO2) between altitudes of 50 and 400 km. Heterodyne radiometry provides a spectral resolution that is well suited to characterising emission signatures originating from the MLT. The technique has been demonstrated and proven at sub-terahertz frequencies through a number of space flight missions over the past two decades. However, operation above 3 THz (supra-terahertz) has never been attempted from a space environment, and measurements of a number of important atmospheric species that have potential impact on climate change and related space weather effects have therefore not been made. Even systems operated from an airborne platform are rare and require large instruments that are completely unsuitable for space flight. There is therefore a need to develop compact, high-sensitivity, supra-terahertz heterodyne systems capable of undertaking global atmospheric measurements from space. To achieve this goal, technical development of the heterodyne mixer detector and its local oscillator (LO) is required. The preferred heterodyne mixing device for Earth observation is the Schottky barrier diode. Although a well-known semiconductor device, it has not been demonstrated in a planar form beyond ~3 THz and challenges related to fabrication and circuit embedding need to be solved to allow this technical evolution. Additionally, the provision of LO power and its coupling to the mixer diode, whilst already presenting a technical barrier at sub-terahertz frequencies, is a particularly difficult problem to resolve in the supra-terahertz range. Fortunately, the advent of the quantum cascade laser (QCL) semiconductor device provides the prospect of a miniaturized, low power, supra-terahertz LO source with sufficient output power to 'pump' the mixer diode as a part of the frequency down-conversion process. Additionally, electromagnetic simulation software now permits the analysis and optimisation of QCL and Schottky diode devices and their respective electrical embedding circuits, with new and advanced micro-fabrication techniques allowing corresponding manufacture. However, technical development is required before a supra-terahertz MLT remote sounding instrument can be realised. For instance, QCL and Schottky device performance optimisation, physical integration into a common (waveguide) package, and frequency stabilisation are necessary. We therefore propose a proof-of-concept development programme with an objective of demonstrating key component technologies (QCL and Schottky diode) to a minimum technical readiness level of TRL 3. Within this programme we will significantly advance core heterodyne technologies through a stepwise development approach, and with a goal of integrating and testing a QCL and Schottky diode in a common waveguide mount. Consideration will also be given to the scientific application and future technical development towards TRL 4 and beyond. ESA has accepted the LOCUS concept as one requiring further evaluation as a prelude to a future in-orbit demonstration. Technical advancement of a terahertz frequency spectrometer through this NERC Proof of Concept Programme would provide a step-change in the progress towards this important scientific objective, as well as positioning the UK ideally for future in-orbit programmes with ESA.
Period of Award:
1 Mar 2014 - 28 Feb 2015
Value:
£73,808 Lead Split Award
Authorised funds only
NERC Reference:
NE/L012375/1
Grant Stage:
Completed
Scheme:
Directed (RP) - NR1
Grant Status:
Closed

This grant award has a total value of £73,808  

top of page


FDAB - Financial Details (Award breakdown by headings)

DI - Other CostsIndirect - Indirect CostsDA - InvestigatorsDA - Estate CostsDI - StaffDI - T&S
£6,855£23,950£9,037£7,091£24,054£2,823

If you need further help, please read the user guide.