Details of Award
NERC Reference : NE/K01482X/1
Microphysics of Antarctic Clouds
Grant Award
- Principal Investigator:
- Professor TW Choularton, The University of Manchester, Earth Atmospheric and Env Sciences
- Co-Investigator:
- Professor PJ Connolly, The University of Manchester, Earth Atmospheric and Env Sciences
- Co-Investigator:
- Professor MW Gallagher, The University of Manchester, Earth Atmospheric and Env Sciences
- Co-Investigator:
- Dr J Crosier, The University of Manchester, Earth Atmospheric and Env Sciences
- Co-Investigator:
- Dr JR Dorsey, The University of Manchester, Earth Atmospheric and Env Sciences
- Co-Investigator:
- Dr KN Bower, The University of Manchester, Earth Atmospheric and Env Sciences
- Grant held at:
- The University of Manchester, Earth Atmospheric and Env Sciences
- Science Area:
- Atmospheric
- Overall Classification:
- Atmospheric
- ENRIs:
- Global Change
- Science Topics:
- Radiative Processes & Effects
- Tropospheric Processes
- Water In The Atmosphere
- Abstract:
- The largest uncertainties in future climate predictions highlighted by the Intergovernmental Panel on Climate change (IPCC 2007) arise from our lack of knowledge of the interaction of clouds with solar and terrestrial radiation (Dufresene & Bony, 2008). In Antarctica clouds play a major role in determining the continent's ice sheet radiation budget, its surface mass balance and ozone climatology. However in spite of this there are few in situ measurements of cloud properties, aerosol numbers, Cloud Condensation Nuclei (CCN) or Ice Nuclei (IN) with the main focus being on remote sensing data sets (see the review by Bromwich et al 2012). As a result the skill in climate and forecast models at high latitudes is significantly poorer than at mid latitudes. In this is project we plan to extend the regions sampled to ones more representative of the Antarctic continent's coastal region. It is in this coastal region that clouds will have the biggest impact on the climate as in the interior of the continent the total cloud cover is less (Lachlan-Cope 2010) and those clouds that exist are more tenuous. To achieve this we will conduct flights from the Halley research station.
- Period of Award:
- 29 May 2014 - 28 Feb 2019
- Value:
- £469,667 Split Award
Authorised funds only
- NERC Reference:
- NE/K01482X/1
- Grant Stage:
- Completed
- Scheme:
- Standard Grant (FEC)
- Grant Status:
- Closed
- Programme:
- Standard Grant
This grant award has a total value of £469,667
FDAB - Financial Details (Award breakdown by headings)
DI - Other Costs | Indirect - Indirect Costs | DA - Investigators | DA - Estate Costs | DI - Staff | DI - T&S | DA - Other Directly Allocated |
---|---|---|---|---|---|---|
£34,292 | £149,432 | £47,467 | £59,008 | £160,190 | £14,227 | £5,050 |
If you need further help, please read the user guide.