Skip to content
Natural Environment Research Council
Grants on the Web - Return to homepage Logo

Details of Award

NERC Reference : NE/K012398/1

Integrated Chemistry of Ozone in the Atmosphere (ICOZA)

Grant Award

Principal Investigator:
Professor C Reeves, University of East Anglia, Environmental Sciences
Co-Investigator:
Mr BJ Bandy, University of East Anglia, Environmental Sciences
Co-Investigator:
Professor D Oram, University of East Anglia, Environmental Sciences
Science Area:
Atmospheric
Overall Classification:
Atmospheric
ENRIs:
Global Change
Pollution and Waste
Science Topics:
Atmospheric Kinetics
Large Scale Dynamics/Transport
Radiative Processes & Effects
Tropospheric Processes
Abstract:
Tropospheric ozone is an important air pollutant, harmful to human health, agricultural crops and vegetation. It is the main precursor to the atmospheric oxidants which initiate the degradation of most reactive gases emitted to the atmosphere, and is an important greenhouse gas in its own right. As a consequence of this central role in atmospheric chemistry and air pollution, the capacity to understand, predict and manage tropospheric ozone levels is a key goal for atmospheric science research. This goal is hard to achieve, as ozone is a secondary pollutant, formed in the atmosphere from the complex oxidation of VOCs in the presence of NOx and sunlight, and the timescale of ozone production is such that a combination of in situ chemical processes, deposition and transport govern ozone levels. Uncertainties in all of these factors affect the accuracy of numerical models used to predict current and future ozone levels, and so hinder development of optimal air quality policies to mitigate ozone exposure. Here, we will address this problem by measuring the local chemical ozone production rate, and (for the first time) perform measurements of the response of the local atmospheric ozone production rate to NOx and VOC levels - directly determining the ozone production regime. We will achieve this aim by building upon an existing instrument for the measurement of atmospheric ozone production rates (funded through a NERC Technology Proof-of-Concept grant, and deployed in the recent ClearfLo "Clean Air for London" NERC Urban Atmospheric Science programme). In addition to directly measuring ozone production, by perturbing the ambient chemical conditions (for example, through addition of NOx or VOCs to the sampled airflow), and measuring the effect of this change upon the measured ozone production rate, the ozone control regime (extent of NOx vs VOC limitation) may be directly determined. Within this project, we will develop our existing ozone production instrument to include this capability, and validate the measurements, through comparison with ozone production from VOC oxidation in a large simulation chamber, and by measurement of the key oxidant OH radicals, and their precursors, within the system. We will then apply the instrument to compare the measured ozone production rates with those calculated using other observational and model approaches, and to characterise the ozone control regime, in two contrasting environments: In the outflow of a European megacity (at Weybourne Atmospheric Observatory, WAO, in the UK), and in a rural continental location (at Hohenpeissenberg, HPB, in southern Germany). At WAO, we will compare the measured ozone production rate with that calculated through co-located measurements of HO2 and RO2 radicals (using a newly developed approach to distinguish between these closely related species), and with that simulated using a constrained photochemical box model. We will compare the NOx-dependence of the ozone production rate with that predicted using indicator approaches, based upon observations of other chemical species. At HPB, we will focus upon the VOC-dependence of the ozone production rate, and assess the error in model predictions of ozone production, which arise from the presence of unmeasured VOCs. The project will develop and demonstrate a new measurement approach, and apply this to improve our understanding of a fundamental aspect of atmospheric chemical processing. Future applications have considerable potential both to support atmospheric science research, but also as an important air quality tool, alongside existing measurement and modelling approaches, to inform the most effective emission controls to reduce ozone production in a given location. In the context of global crop yield reductions arising from ozone exposure of 7 - 12 % (wheat), 6 - 16 % (soybean) and 3 - 4 % (rice), this is an important societal as well as scientific goal.
Period of Award:
1 Nov 2013 - 31 Oct 2016
Value:
£87,612 Split Award
Authorised funds only
NERC Reference:
NE/K012398/1
Grant Stage:
Completed
Scheme:
Standard Grant (FEC)
Grant Status:
Closed
Programme:
Standard Grant

This grant award has a total value of £87,612  

top of page


FDAB - Financial Details (Award breakdown by headings)

DI - Other CostsIndirect - Indirect CostsDA - InvestigatorsDI - StaffDA - Estate CostsDA - Other Directly AllocatedDI - T&S
£4,220£24,074£9,483£36,318£9,275£786£3,455

If you need further help, please read the user guide.