Details of Award
NERC Reference : NE/K011510/1
Anisotropic sea ice mechanics in the Arctic
Grant Award
- Principal Investigator:
- Professor DL Feltham, University of Reading, Meteorology
- Grant held at:
- University of Reading, Meteorology
- Science Area:
- Marine
- Overall Classification:
- Marine
- ENRIs:
- Environmental Risks and Hazards
- Global Change
- Science Topics:
- Climate & Climate Change
- Ocean Circulation
- Continuum Mechanics
- Abstract:
- In response to global warming, the ice covers of the Arctic and Antarctic are changing, with a significant reduction in the summer extent of Arctic sea ice. The observed recent, rapid reduction of Arctic sea ice is more extreme than the predictions of even the most pessimistic of climate models, which suggests that these models do not present the processes controlling the reduction of sea ice adequately. Satellite observations, field work, and modelling all point to the importance of sea ice dynamics in controlling the mass balance of Arctic sea ice. The greatest uncertainty in sea ice dynamics is in the relationship between internal sea ice stresses and the deformation and state of the sea ice cover, known as the sea ice rheology. The description of sea ice rheology in existing climate models treats the ice cover as isotropic, so that at a given location there is equal resistance to failure in all directions. However, it has been known for over a decade that the ice cover is highly anisotropic, with oriented cracks present at all length scales, and these cracks control the directions of preferential deformation. While researchers have been aware of the importance of anisotropic mechanics, only recently has a model of anisotropic rheology been constructed and incorporated into the sea ice component of a climate model. This project aims to eliminate fundamental uncertainty in the processes controlling anisotropy creation and destruction through a combination of recently produced, high-resolution satellite deformation maps and computer modelling. A major result of the research will be a new representation of anisotropic sea ice rheology incorporated into the CICE sea ice model, which is the sea ice model used in many climate models, including the UK Hadley Centre series of climate models. We will use CICE to investigate the role of anisotropic rheology in producing the recent and rapid reduction of Arctic sea ice.
- NERC Reference:
- NE/K011510/1
- Grant Stage:
- Completed
- Scheme:
- Standard Grant (FEC)
- Grant Status:
- Closed
- Programme:
- Standard Grant
This grant award has a total value of £289,411
FDAB - Financial Details (Award breakdown by headings)
DI - Other Costs | Indirect - Indirect Costs | DA - Investigators | DI - Staff | DA - Estate Costs | DA - Other Directly Allocated | DI - T&S |
---|---|---|---|---|---|---|
£1,545 | £98,087 | £19,782 | £112,271 | £36,435 | £9,316 | £11,976 |
If you need further help, please read the user guide.