Skip to content
Natural Environment Research Council
Grants on the Web - Return to homepage Logo

Details of Award

NERC Reference : NE/I024488/1

Understanding how the mantle transition-zone 'valve' controls slab fate

Grant Award

Principal Investigator:
Dr DR Davies, Imperial College London, Earth Science and Engineering
Co-Investigator:
Professor SDB Goes, Imperial College London, Earth Science and Engineering
Science Area:
Earth
Overall Classification:
Unknown
ENRIs:
Environmental Risks and Hazards
Global Change
Natural Resource Management
Science Topics:
None
Abstract:
Subduction is the process where tectonic plates descend into Earth's deep interior, the mantle. Subduction is critically important since it drives (i) plate tectonics (the ultimate process behind seismicity and mountain building); (ii) melting, (critical for volcanism, and producing crust and atmosphere) and (iii) mantle circulation. Yet, we do not fully understand how it 'works'. Subducting plates ('slabs') form the downwelling limb of mantle convection. Mantle convection differs in several important ways from the familiar convection of water boiling in a saucepan on a stove. Firstly, mantle rocks are solid, but they can creep on long time scales. Secondly, in the 'transition zone', 400 to 800 km down into the 3000 km deep mantle, mantle minerals undergo high-pressure phase changes to more tightly-packed and denser structures. Creep varies strongly with temperature, making cold subducting plates much stiffer than the surrounding warm mantle. Exact creep style varies with, amongst others, pressure and stress, and controls how rapidly slabs lose their strength as they heat up while sinking. How easily a slab deforms again influences its sinking speed. The style of creep is also affected by the changes in mineral structure and grain size that occur at phase transitions. The interaction between creep and phase changes in the transition zone complicate the subduction of plates from the upper mantle into the mantle below the transition zone. Of special importance is the transition around 660 km depth where mantle viscosity increases by a factor of 10-100 and a delay of the phase transformation in the cold slabs makes them temporarily lighter than the mantle. This can lead to stalling of slabs in the transition zone. In this way, the transition zone controls how efficiently heat and material are cycled through the mantle, (including water and CO2 which have affected the evolution of climate). Observed rapid changes in plate motions indicate that there are episodes in which slabs sink through the transition zone quite readily ('valve' open), and others in which they stall there and pile up ('valve' shut). Seismic tomography images of the Earth's interior, reconstructed from seismogram recordings, show that at the moment, many slabs, including those below Tonga, Japan and Sumatra pool in the transition zone, while a few others, for example below Central America, descend straight to great depths. Different explanations have been proposed. One end-member hypothesis (put forward by co-I Dr. Goes) is that the oldest, coldest plates are stiffest and tend to flatten at the base of the transition zone rather than sink straight through, while young warm slabs form piles that sink through the transitions more easily. Partner Karato in contrast hypothesises that slabs emerge from the major phase transition at 400 km consisting of small, weak new grains. While in young slabs, warm temperatures encourage grain growth and the slabs quickly regain strength allowing them to push through, old slabs remain weakened and are hence unable to open the valve. Recently, co-I Davies, together with colleagues at Imperial developed a numerical code that allows models with grids that adapt to the scale of model complexity, i.e. high resolution in regions with changes over small scales, like near changes in phase or creep mechanism, and, computationally-less-expensive, coarser resolution in regions with low variability. This allows us to model for the first time, the complex interplay between the thermal, phase and creep effects on subducting slabs. We will make a set of subduction models incorporating the most recent data on phase change properties (from co-I Lithgow-Bertelloni) and creep laws (from partner Karato). By comparing model predictions with geophysical observations we will be able to determine if either of the two end-member hypotheses or combined or alternative mechanism explains the crucial workings of the transition zone 'valve'.
Period of Award:
1 Jul 2012 - 30 Jun 2015
Value:
£107,140 Split Award
Authorised funds only
NERC Reference:
NE/I024488/1
Grant Stage:
Completed
Scheme:
Standard Grant (FEC)
Grant Status:
Closed
Programme:
Standard Grant

This grant award has a total value of £107,140  

top of page


FDAB - Financial Details (Award breakdown by headings)

DI - Other CostsIndirect - Indirect CostsDA - InvestigatorsDA - Estate CostsDI - StaffDI - T&SDA - Other Directly Allocated
£6,674£40,528£7,427£14,116£32,183£4,717£1,497

If you need further help, please read the user guide.