Details of Award
NERC Reference : NE/I02318X/1
Earthquake hazard from 36-Cl exposure dating of elapsed time and Coulomb stress transfer
Grant Award
- Principal Investigator:
- Dr LC Gregory, University of Leeds, School of Earth and Environment
- Grant held at:
- University of Leeds, School of Earth and Environment
- Science Area:
- Earth
- Overall Classification:
- Unknown
- ENRIs:
- Environmental Risks and Hazards
- Science Topics:
- None
- Abstract:
- Overview: We request funds to make measurements of the elapsed time since major earthquakes on active faults in central Italy using 36-Cl cosmogenic dating, and calculate stress transfer from historical/palaeoseismic earthquakes. This will allow (1) knowledge transfer to at-risk communities in the region so they can prepare for future earthquakes if a fault with a long earthquake elapsed time has had stress transferred onto it by a neighboring earthquake(s), and (2) communication of this process to other regions with similar earthquake hazard. Technical Summary: Active faults experience earthquake rupture due to stress transfer from neighboring earthquakes only if the fault in question is close to its failure stress. We lack knowledge of which faults are close to their failure stress and thus cannot interpret calculations of stress transfer in terms of the probability of impending earthquakes. We propose, for an active normal fault system in central Italy, to measure the elapsed time since the last earthquake normalised to fault slip-rates using in situ 36-Cl cosmogenic isotope dating, because this is a proxy for how close a fault is to its failure stress. We will combine this with calculations of stress transfer from historical and palaeoseismic earthquakes in order to calculate which faults have the highest probability of rupture. Background: When an earthquake ruptures an active fault, stress is transferred onto neighboring active faults. This transfer of stress may cause a neighboring active fault to rupture in a subsequent earthquake. For example, the 2004 Boxing day earthquake on the subduction plate boundary near Sumatra caused severe loss of life on that day, but also triggered subsequent earthquakes in 2005, 2007, 2009 and 2010, each of which caused major loss of life. Such triggered earthquakes also occur on active faults within plates, such as the three 9th September > Mw 6 earthquakes in 1349 A.D. in central Italy, which occurred on the same day, but on different active faults; this has increased concern for the possibility of a future mainshock to follow the 2009 L'Aquila earthquake (Mw 6.3) whose ongoing aftershocks have transferred onto a neighboring fault (Fig. 1). A key point is that, despite the above examples, earthquakes do not always trigger subsequent earthquakes. Subsequent earthquakes only occur if the neighboring fault(s) are already close to failure due to long-term loading from motions in the crust or between plates. Identification of such faults could inform local populations and civil protection agencies in advance of a future earthquake allowing location-prioritised mitigation efforts. However, unfortunately, we cannot directly measure stress on a fault at 12-15 km depth where intra-plate mainshocks nucleate and so cannot identify such faults. However, we can measure a proxy for stress-through-time, that is elapsed time since the last earthquake, using cosmogenic isotopes (36-Cl). In the sub-surface, 36-Cl concentrations accumulate through time mainly due to hits on calcium atoms by cosmic particles. With 1-2 m slip in each earthquake on active normal faults, and with knowledge of 36-Cl production rates at depth, 36-Cl concentrations measured at 1-2 metres depth quantify elapsed time since the last earthquake. We can dig trenches to expose the fault plane to 1-2 metres depth and measure 36-Cl concentrations on the fault planes. If a neighboring earthquake has loaded/stressed a location with a high 36-Cl concentration, and hence a long elapsed time, we will be able to inform civil protection agencies responsible for planning mitigation; no such data are available at present. We can make such measurements, and have ongoing links with government civil protection project partners who make the seismic hazard maps for central Italy, and who are involved in communicating seismic hazard worldwide.
- Period of Award:
- 9 Jul 2012 - 8 Nov 2016
- Value:
- £438,169 Split Award
Authorised funds only
- NERC Reference:
- NE/I02318X/1
- Grant Stage:
- Completed
- Scheme:
- Standard Grant (FEC)
- Grant Status:
- Closed
- Programme:
- Standard Grant
This grant award has a total value of £438,169
FDAB - Financial Details (Award breakdown by headings)
DI - Other Costs | Indirect - Indirect Costs | DA - Investigators | DI - Staff | DA - Estate Costs | DI - T&S | DA - Other Directly Allocated |
---|---|---|---|---|---|---|
£139,253 | £104,464 | £12,929 | £97,835 | £40,377 | £27,348 | £15,963 |
If you need further help, please read the user guide.