This site is using cookies to collect anonymous visitor statistics and enhance the user experience.  OK | Find out more

Skip to content
Natural Environment Research Council
Grants on the Web - Return to homepage Logo

Details of Award

NERC Reference : NE/I010734/1

Melting in the Deep Earth

Grant Award

Principal Investigator:
Professor JP Brodholt, University College London, Earth Sciences
Co-Investigator:
Professor D Dobson, University College London, Earth Sciences
Co-Investigator:
Professor L Stixrude, University College London, Earth Sciences
Science Area:
Earth
Overall Classification:
Earth
ENRIs:
Global Change
Environmental Risks and Hazards
Science Topics:
Mantle & Core Processes
Abstract:
Melting in the Earth has a huge effect on its chemical and physical state. For instance, the chemistry of the crust, the mantle and the atmosphere are largely controlled by melting and crystalisation at mid-ocean ridges, hotspots or island arcs. There has, therefore, been an enormous effort in the last decades to understand these shallow melting processes. Yet much deeper melts may have been equally influential in the evolution of the Earth. For instance, it is generally accepted that a deep magma ocean perhaps extending to the Earth's centre, existed early its history. This was the result of multiple impacts as the Earth accreted. From this magma ocean, iron melts separated from silicate melts to form the core, volatiles degassed to form an early atmosphere, and a proto-crust may have formed. It is also accepted that the Earth was hit by a Mars-sized body to create the moon; this too would have caused enormous amounts of melting in the deep Earth. Moreover, there is some evidence for melting in the deep Earth now. It is possible, therefore, that melts in the deepest Earth have existed throughout Earth's history. However, many basic data on the physical and chemical properties of deep melting do not exist. For instance, we don't know the melting curves for mantle minerals and rocks at the pressure and temperatures of the deep Earth. We don't know which minerals crystalise from these melts first (the liquidus phases). We don't know the composition of partial melts of deep mantle rocks or rocks which have been subducted. We don't know the relative densities of the rocks and their melts, and so we do not even know whether minerals float of sink in these deep melts. This lack of data has led to much speculation on the effect of deep melts on the Earth's evolution. For instance, it has been suggested that geophysical and geochemical anomalies in the Earth's mantle have deep early melts as their origin. But these models depend of the chemical and physical properties of the melts and crystalline solids, properties that are simply not known. This project will use novel experiments in conjunction with ab initio modelling obtain these data. The data will provide the chemical and physical foundation on which all future models of the Earths early crystallization and subsequent evolution will be based.
Period of Award:
1 Sep 2012 - 31 Dec 2015
Value:
£368,099 Lead Split Award
Authorised funds only
NERC Reference:
NE/I010734/1
Grant Stage:
Completed
Scheme:
Standard Grant (FEC)
Grant Status:
Closed
Programme:
Standard Grant

This grant award has a total value of £368,099  

top of page


FDAB - Financial Details (Award breakdown by headings)

DI - Other CostsIndirect - Indirect CostsDA - InvestigatorsDI - StaffDA - Estate CostsDI - T&S
£8,104£142,903£63,106£104,371£41,756£7,861

If you need further help, please read the user guide.