Details of Award
NERC Reference : NE/H021221/1
Are glyoxal and methylglyoxal critical to the formation of a missing fraction of SOA (Secondary Organic Aerosol)?: (Pho-SOA).
Grant Award
- Principal Investigator:
- Professor J Hamilton, University of York, Chemistry
- Grant held at:
- University of York, Chemistry
- Science Area:
- Atmospheric
- Overall Classification:
- Atmospheric
- ENRIs:
- Pollution and Waste
- Global Change
- Environmental Risks and Hazards
- Science Topics:
- Environment & Health
- Atmospheric Kinetics
- Climate & Climate Change
- Abstract:
- Atmospheric aerosols are ubiquitous in the Earth's atmosphere. They are made up of complex colloidal mixtures of liquid and solid particulate matter and understanding their chemical and physical properties is crucial in elucidating their environmental and health impacts. However, despite much scientific effort over the last decade, the true impact of aerosols on the Earth's atmosphere is yet to be elucidated owing to large uncertainties and lack of fundamental knowledge on their sources, composition (hence physical properties) and formation mechanisms. Recent experimental findings indicate organic aerosols (OA) are predominantly secondary in nature and can account for a significant fraction (10-70%) of total ambient atmospheric aerosol. However, current models significantly underestimate SOA (Secondary Organic Aerosol) production and their rate of formation. Accretion or oligomerization reactions of light weight volatiles such as glyoxal (GLY, CHOCHO) and methylglyoxal (MGLY, CH3COCHO), which have been shown to be a potentially important source of global SOA, have been proposed to justify such disagreement. The magnitude, type (reversible or irreversible) and mechanism of particle growth owing to alfa-dicarbonyls are still substantial questions. The aim of this project is to quantitatively demonstrate the hypothesis that heterogeneous uptake of GLY and MGLY in aerosols can explain a significant fraction of the missing SOA in models. To address this, the project will carry out an extensive series of outdoor chamber experiments (in the highly instrumented European Photoreactor, EUPHORE) that will address the main limitations of previous studies. The experimental work will be supported by detailed chamber simulations using the Master Chemical Mechanism (MCM15). GLY or MGLY will either be introduced directly into the chamber or generated in-situ by the reaction of OH + alkynes. The chamber experiments will be carried out in the presence (and absence) of natural solar radiation in EUPHORE in order to investigate whether heterogeneous reactive uptake of these dicarbonyl compounds and SOA growth is photochemically activated (photosensitized) and relative humidity dependent. The gas and aerosol phase evolution of the precursor and oxidation products, together with HOx radicals (OH + HO2) will be monitored using novel chemical ionisation reaction (time-of-flight and quadrupole) mass spectrometry (CIR-MS), Aerosol Time of Flight Mass Spectrometry (ATOFMS), Fourier Transform Ion Cyclotron resonance Mass Spectrometry (FT-ICR-MS), liquid chromatography-ion trap mass spectrometry (LC-MSn) and laser induced fluorescence (LIF). Model sensitivity simulations using the MCM coupled to a representation of absorptive gas-to-aerosol partitioning incorporating parameterisations from the findings of this study, will be carried out in order to investigate the atmospheric implications of SOA formation via heterogeneous uptake of dicarbonyl compounds for urban environment where aromatics compounds (significant sources of dicarbonyls) have been proposed as key urban SOA sources.
- Period of Award:
- 1 Sep 2011 - 31 Mar 2014
- Value:
- £227,778 Split Award
Authorised funds only
- NERC Reference:
- NE/H021221/1
- Grant Stage:
- Completed
- Scheme:
- Standard Grant (FEC)
- Grant Status:
- Closed
- Programme:
- Standard Grant
This grant award has a total value of £227,778
FDAB - Financial Details (Award breakdown by headings)
DI - Other Costs | Indirect - Indirect Costs | DA - Investigators | DI - Staff | DA - Estate Costs | DI - T&S | DA - Other Directly Allocated |
---|---|---|---|---|---|---|
£11,147 | £70,798 | £5,265 | £83,812 | £32,648 | £2,774 | £21,331 |
If you need further help, please read the user guide.