This site is using cookies to collect anonymous visitor statistics and enhance the user experience.  OK | Find out more

Skip to content
Natural Environment Research Council
Grants on the Web - Return to homepage Logo

Details of Award

NERC Reference : NE/H014098/1

Relating fungal functional diversity to C-cycling in sub- and Maritime Antarctic soils

Grant Award

Principal Investigator:
Dr CH Robinson, The University of Manchester, Earth Atmospheric and Env Sciences
Science Area:
Terrestrial
Overall Classification:
Terrestrial
ENRIs:
Global Change
Biodiversity
Science Topics:
Environmental Microbiology
Biogeochemical Cycles
Glacial & Cryospheric Systems
Soil science
Abstract:
The decomposition of organic matter is a critical process to the functioning of terrestrial ecosystems. This process is largely driven by saprotrophic (decomposer) fungi in soil and plant litter. Saprotrophic fungi therefore have pivotal roles in the release of carbon (C) from terrestrial ecosystems, in the form of CO2 (a climate-forcing gas), to the atmosphere. Currently, little is known of the specific roles of individual fungal species, i.e. functional diversity, in the degradation of particular C components in the sub- and Maritime Antarctic. The first step in characterising functional diversity is to identify the soil C components (fractions, particle sizes and ages) with which decomposer fungi in soil are associated. Establishing baseline fungal taxonomic and functional diversity and characterizing the soil C components - central aims of this proposal - are fundamental to understand the impacts of environmental change on Antarctic ecosystems. Why the sub- and Maritime Antarctic? Soils in these regions have relatively high stocks of C because of the slow decomposition of organic matter and the tundra vegetation present. For example, soils from South Georgia and Signy Island contain 30 to 40% C. The potential temperature responses of these soils and the C fractions they contain are also important to understand because the terrestrial Maritime Antarctic has been warming rapidly, at c. 0.2-0.4 degrees C per decade over the past 50-100 years, one of the fastest rates of warming recorded. The temperature sensitivity of young and older C fractions in releasing CO2 to the atmosphere is much debated, particularly for peatlands and permafrost soils, such as those that occur in the sub- and Maritime Antarctic. We will determine the associations of specific fungal taxa with specific organic fractions in the field at three sites in the sub- and Maritime Antarctic, and characterise by age and organic geochemistry, the C components of these fractions. In the laboratory, the specific C fractions mineralised by 'key' species of fungi will be determined, together with responses to temperature increases and freeze-thaw cycles. The outcomes of the project will be: (1) a better understanding of the roles of particular groups of fungi in the C cycle, (2) a benchmark for future studies (e.g. in arctic or temperate soils) of the functional roles of fungal mycelia in relation to C mineralisation will have been obtained, and (3) the effects of temperature increases / freeze-thaw on C mineralisation will have been determined.
Period of Award:
1 Jul 2011 - 31 Dec 2014
Value:
£288,897 Lead Split Award
Authorised funds only
NERC Reference:
NE/H014098/1
Grant Stage:
Completed
Scheme:
AFI (FEC)
Grant Status:
Closed
Programme:
AFI

This grant award has a total value of £288,897  

top of page


FDAB - Financial Details (Award breakdown by headings)

DI - Other CostsIndirect - Indirect CostsDA - InvestigatorsDA - Estate CostsDI - StaffDA - Other Directly AllocatedDI - T&S
£21,188£104,253£20,708£37,372£89,326£9,639£6,411

If you need further help, please read the user guide.