This site is using cookies to collect anonymous visitor statistics and enhance the user experience.  OK | Find out more

Skip to content
Natural Environment Research Council
Grants on the Web - Return to homepage Logo

Details of Award

NERC Reference : NE/H007288/1

Do floods matter? Bridging the gap between fluvial morphodynamics and alluvial architecture

Grant Award

Principal Investigator:
Professor G Sambrook Smith, University of Birmingham, Sch of Geography, Earth & Env Sciences
Science Area:
Freshwater
Earth
Overall Classification:
Earth
ENRIs:
Pollution and Waste
Global Change
Environmental Risks and Hazards
Science Topics:
Earth Surface Processes
Sediment/Sedimentary Processes
Abstract:
Most lowland rivers flow across large floodplain complexes composed of sediment deposited during floods. These floodplains, and the sedimentary deposits of which they are composed, are of considerable environmental significance. For example, floodplain deposits are regularly used to infer the nature and timing of past climate change, or to assess the impact of upstream landscape disturbance by human activity. Furthermore, the balance between processes of sediment deposition and reworking, due to river migration, determines the residence time of sediment in the floodplain. This is critically important for biogeochemical cycling (eg. of Carbon) and for the transport and fate of sediment associated nutrients and contaminants. Numerical models are important tools that are needed to predict the way that floodplains build up over time and recycle sediment, in order to provide quantitative understanding of floodplain functioning in the context of the diverse environmental applications outlined above. However, despite the need for such models, no model currently exists that is capable of representing the processes involved in the construction and evolution of floodplains over the timescales relevant to these applications (decades to millennia). The reason for this is that realistic models of floodplain evolution need to represent the complex behaviour of the floodwaters that control sediment transport and deposition. However, to do this it is necessary to solve the equations of fluid motion, which is time consuming (in computational terms). For this reason, existing models of floodplain construction neglect these hydraulic and hydrologic controls and, consequently, are unable to predict how floodplains evolve in a way that is physically realistic. This project aims to address this fundamental problem by developing & evaluating a new generation of hydraulically-driven approaches to modelling floodplain construction and evolution. The model developed here will be applicable over periods of up to 100,000 years, yet will have at its core a physically-based hydrodynamic model more usually restricted to applications involving individual floods. This will be achieved by using two approaches to reduce model run times: (1) Parallelising the code for implementation using High Performance Computing; and (2) Developing a series of novel methods of parameterising the effects of fine scale floodplain topography to allow the model to be implemented at reduced grid resolutions, thus substantially increasing model efficiency. The key strength of this modelling approach is that it will allow long-term floodplain evolution to be simulated using an approach underpinned by sound fluid dynamics principles. The model will be evaluated using field and remote sensing data collected from an extensive, natural floodplain system, that is unaffected by either human activity or the effects of Holocene sea level change. Model evaluation will be carried out over the past century and over the Holocene. Following this, the model will be used to conduct a series of numerical experiments designed to investigate the relationships between floodplain evolution, sedimentary deposits and environmental conditions (climate, flood regime, sediment supply, flood basin geometry, & tectonic setting). In combination, field evidence and model simulations will provide new quantitative insight into questions concerning floodplain functioning that have never been addressed due to the current lack of a physically-realistic hydraulically-driven model of long-term floodplain evolution.
Period of Award:
1 Dec 2010 - 31 May 2014
Value:
£49,955 Split Award
Authorised funds only
NERC Reference:
NE/H007288/1
Grant Stage:
Completed
Scheme:
Standard Grant (FEC)
Grant Status:
Closed
Programme:
Standard Grant

This grant award has a total value of £49,955  

top of page


FDAB - Financial Details (Award breakdown by headings)

DI - Other CostsIndirect - Indirect CostsDA - InvestigatorsDA - Estate CostsDI - T&SDA - Other Directly Allocated
£6,329£12,080£21,952£6,052£3,416£125

If you need further help, please read the user guide.