Skip to content
Natural Environment Research Council
Grants on the Web - Return to homepage Logo

Details of Award

NERC Reference : NE/G013098/2

Airborne geophysical investigation targets basal boundary conditions for the Institute and Moller ice streams, West Antarctica

Grant Award

Principal Investigator:
Dr D Rippin, University of York, Environment
Science Area:
Terrestrial
Earth
Overall Classification:
Earth
ENRIs:
Global Change
Environmental Risks and Hazards
Science Topics:
Earth Surface Processes
Quaternary Science
Glacial & Cryospheric Systems
Palaeoenvironments
Abstract:
The Institute and Moller ice streams (IIS/MIS) drain about 20% of the West Antarctic Ice Sheet (WAIS) to the Ronne Ice Shelf, yet our knowledge of their current form and flow history is severely restricted compared with other fast flowing regions in West Antarctica. Data relating to the ice thickness and the ice-sheet bed is limited to reconnaissance transects acquired in the 1970s. Bingham and Siegert (2007) inspected these data, and showed the remarkably smooth and flat bed was similar to the Siple Coast ice streams that drain to the Ross Ice Shelf. As the Siple Coast region is thought to be underlain by marine sediments, deposited when the ice sheet size was smaller than today, Bingham and Siegert (2007) concluded a similar, probably simultaneous, history for the Institute/Moller region. The implications of this finding are significant for future changes in West Antarctica. Bingham and Siegert's (2007) analysis allows us to hypothesise substantial former ice-shelf loss and grounding line retreat in two of the three major drainage outlets of West Antarctica. An extensive airborne geophysical survey of the Institute and Moller ice streams is therefore clearly warranted, to test this hypothesis and better understand the risk of future change. The survey will also allow a better depiction of bed topography and geological boundary conditions in West Antarctica, which will allow us to better quantify the flow and form of the entire WAIS through numerical modelling. The project's objectives are as follows. 1. To undertake an airborne geophysical survey of the Institute and Moller ice streams of West Antarctica. 2. To quantify bed topography and measure bed roughness from radar data. 3. To map englacial structures (layering and crevasses). 4. To determine power reflection coefficients, forming an appreciation of basal water distribution. 5. To analyse magnetic and gravity anomalies to derive geological boundary conditions for ice flow. 6. To employ numerical modelling to quantify modern and ancient ice flow processes. 7. To use numerical modelling to predict the risk of former changes reoccurring. This project will result in the following deliverables: 1. The quantification of subglacial topography (and bed roughness) in a hitherto poorly known region of West Antarctica. This information will be made available to the BEDMAP II database, and will make a fundamental contribution as an ice sheet modelling boundary condition. We will analyse these data to determine landscape evolution and ice sheet history. 2. The classification of subglacial thermal conditions and locations of subglacial lakes. This will allow us to comprehend how ice stream flow and subglacial lake/hydrology evolution is both interrelated and affected by subglacial geology and thermal conditions. 3. The measurement of the englacial structure in the WAIS. We will analyse this information to calculate the flow history of the ice sheet and to delineate the margins of the IIS and MIS both now and in the recent past. 4. The definition of crustal structure and subglacial geology of the IIS and MIS catchments of the WAIS. The glacial history of the WAIS is of direct relevance to assessments of the present day risk of collapse and sea level rise. We aim to report our results directly to the international scientific community by linking to the Scientific Committee on Antarctic Research's (SCAR) scientific research programme entitled Antarctic Climate Evolution (ACE), which integrates geology and geophy sical datasets, forming hypotheses concerning past changes, which can be tested through modelling. The ACE link also allows us to disseminate results to the IPCC through SCAR's observer status in that organisation. We will also make results available to the SCAR programme named Subglacial Antarctic Lake Environments (SALE) and will contribute the new magnetic dataset to the international Antarctic Digital Magnetic Anomaly Project.
Period of Award:
1 Oct 2010 - 31 Mar 2013
Value:
£15,441 Split Award
Authorised funds only
NERC Reference:
NE/G013098/2
Grant Stage:
Completed
Scheme:
AFI (FEC)
Grant Status:
Closed
Programme:
AFI

This grant award has a total value of £15,441  

top of page


FDAB - Financial Details (Award breakdown by headings)

Indirect - Indirect CostsDA - Estate CostsDA - Other Directly Allocated
£2,689£3,849£8,902

If you need further help, please read the user guide.