Details of Award
NERC Reference : NE/E016251/1
Production, characterisation and novel roles of sea-ice diatom exopolymers (EPS)
Grant Award
- Principal Investigator:
- Professor GJC Underwood, University of Essex, Biological Sciences
- Grant held at:
- University of Essex, Biological Sciences
- Science Area:
- Marine
- Overall Classification:
- Marine
- ENRIs:
- Natural Resource Management
- Global Change
- Biodiversity
- Science Topics:
- Environmental Microbiology
- Biogeochemical Cycles
- Environmental biotechnology
- Abstract:
- Sea ice covers up to 13% of the world's surface and is a unique environment, supporting a diverse microbial community. During ice formation in autumn, microorganisms are confined to hypersaline brine channels, where salinity reaches over 20% and temperatures can drop to below -20oC. Despite the harsh environmental conditions the algal biomass is surprisingly high, with diatoms representing a major component to this unique community. It has been determined that sea ice diatoms produced large amounts of extracellular polymeric substances (EPS) or mucilages, that fill the brine channels. These mucilages are thought to help the diatoms to survive in the harsh conditions of the sea ice channels. The cells that remain metabolically active in this hypersaline brine at ultra low temperatures are living in an environment of such reduced free energy that the system is virtually locked up at the molecular level. It is suggested that the extracellular polymeric substances (EPS) may confer general benefits to ice diatoms, such as cryoprotection, salinity barriers and a localised microclimate. In this proposal, experiments and sampling will be carried out in the field (Antarctica) and in laboratory cultures to determine the abundance and composition of this diatom EPS, measure the protective properties of EPS, and determine how EPS aids the survival of diatoms in conditions that are inhospitable to life. We aim to answer the question how is sustained metabolic activity possible and what role EPS might play in cellular tolerance of these conditions? The outcomes from this research will enable scientists to understand how microbes can survive in extreme environments.
- Period of Award:
- 1 Oct 2007 - 31 May 2011
- Value:
- £268,218 Lead Split Award
Authorised funds only
- NERC Reference:
- NE/E016251/1
- Grant Stage:
- Completed
- Scheme:
- Standard Grant (FEC)
- Grant Status:
- Closed
- Programme:
- Standard Grant
This grant award has a total value of £268,218
FDAB - Financial Details (Award breakdown by headings)
DI - Other Costs | Indirect - Indirect Costs | DA - Investigators | DA - Estate Costs | DI - Staff | DI - T&S | DA - Other Directly Allocated |
---|---|---|---|---|---|---|
£27,840 | £85,854 | £8,241 | £26,945 | £90,450 | £5,759 | £23,131 |
If you need further help, please read the user guide.