Details of Award
NERC Reference : NE/S013415/1
Workshop for 'omics methodology development: use of secretome enriched meta-transcriptome sequencing for understanding interactions in diseased corals
Grant Award
- Principal Investigator:
- Professor TA Richards, University of Exeter, Biosciences
- Grant held at:
- University of Exeter, Biosciences
- Science Area:
- Earth
- Freshwater
- Marine
- Terrestrial
- Overall Classification:
- Unknown
- ENRIs:
- Biodiversity
- Environmental Risks and Hazards
- Global Change
- Pollution and Waste
- Science Topics:
- Community Ecology
- Environmental Microbiology
- Transcriptomics
- Environmental Informatics
- Tools for the biosciences
- Abstract:
- Coral reefs are beautiful, unique and important ecosystems. Coral ecosystems are home to a huge range of biodiversity, conduct important ecosystem services and support many tropical fisheries and their associated human societies. Coral reefs are dying at an unprecedented rate leading to catastrophic ecosystem collapse, which is threatening biodiversity conservation and reducing the sustainability of many tropical fisheries around the globe. Climate change, over-fishing and pollution are recognised as the major contributing factors to coral reef decline. Furthermore, the significant increase in coral infectious disease load and diversity are also recognised as critical threats to coral reef ecosystems. In many cases climate change, over-fishing and pollution are recognised as the drivers of increased coral disease load and diversity. Corals rely on complex interactions with the microbes that live on and inside their bodies. The nature of these interactions, both beneficial and negative, are therefore dependant on numerous environmental factors and ecological interactions. These interactions are incredibly difficult to study in natural coral reef ecosystems and very difficult to reconstitute accurately in laboratory experiments. As such we drastically need new methods that make use of cutting edge large-scale DNA sequencing platforms so we can study these interactions directly in natural environments. Many of the complex interactions that corals undergo, with the microbes that live on and inside their bodies, are mediated through genes that encode proteins that exit out of the cell into the external environment. These proteins are functional in the external environment, interacting with other microbes and the host coral cells. In some cases, these proteins function to cause disease, for example by killing or perturbing the coral cells. The aim of this project is to bring together an international community of scientists to develop a new methodology for studying how microbes interact with coral (and vice versa) through specifically sampling and sequencing the genes that encode the specialised proteins that exit the cell and function in the external environment. By developing this protocol, we will have a new powerful and direct method that will enable us to study how microbes interact with coral to cause disease. Having established this method we will build public access resources and detailed protocols so that other scientists can then use this methodological approach to study a range of coral reef diseases and further adapt the approach for the study of additional infectious disease interactions in natural environments. This is important because it will unlock the door to studying a whole range of complex interactions in new ways directly from the environment, interactions which cannot be realistically recapitulated in a laboratory setting.
- NERC Reference:
- NE/S013415/1
- Grant Stage:
- Completed
- Scheme:
- Directed (RP) - NR1
- Grant Status:
- Closed
- Programme:
- Omics
This grant award has a total value of £46,074
FDAB - Financial Details (Award breakdown by headings)
DI - Other Costs | Indirect - Indirect Costs | DI - Staff | DA - Estate Costs | DA - Other Directly Allocated | DI - T&S |
---|---|---|---|---|---|
£8,771 | £11,043 | £10,188 | £4,052 | £2,181 | £9,839 |
If you need further help, please read the user guide.